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Frequency-Response Masking Filters

I frequency-response masking filters are a technique to design
sharp low-pass, high-pass, bandpass and bandstop filters with
arbitrary passband bandwidth

I furthermore linear phase FIR filters are generated, which have
advantages such as guaranteed stability and are free of phase
distortion

I however, the problem with FIR filters is the high complexity
for sharp filters
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Advantages

I with the frequency-response masking technique the resulting
filter has very sparse coefficients

I since only a very small fraction of its coefficient values are
nonzero, its complexity is very much lower than the infinite
wordlength minimax optimum filter

I with an additional multiplierless design method the complexity
is reduced to a minimum
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Linear Phase FIR Filters

I in linear phase FIR filters phase is a linear function of
frequency

I they have a symmetric impulse response

I the phase delay (−phase
ω ) is N−1

2 at every frequency

I also the group delay (− d
dωphase) is N−1

2
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Zero Phase Filters

I are a special case of linear phase filters, where the phase delay
is zero

I impulse response of a zero phase filter is even about time 0:

h(n) = h(−n)

therefore this filter cannot be causal

I a real, even impulse response corresponds to a real, even
frequency response

I for an odd impulse response

h(n) = −h(−n)

the frequency response is purely imaginary
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Zero Phase Filters

Impulse and frequency response of a length 11 zero-phase FIR
lowpass filter:
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Symmetric Linear Phase Filters

I are derived from a delayed zero-phase filter

I are causal and symmetric about the midpoint:

h(n) = h(N − 1− n), n = 0, 1, ...,N − 1

I HZP is a zero-phase filter, N is odd:

hZP(n) = h(n − N − 1

2
), n = 0, 1, ...,N − 1

H(z) = z−
N−1

2 HZP(z)

H(e jωT ) = e−jω N−1
2

THZP(e jωT )
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Narrow Band Filter Design
Arbitrary Bandwidth Filter Design

Basic Principle

The basic principle of frequency masking is the following:

I in a linear phase model filter each delay is replaced by M
delays

I this results in a periodic filter with much sharper transition
bands

I finally a masking filter extracts the desired band
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Narrow Band Filter Design

Frequency Masking Principle:

I low-pass filter Ha(z) with
transition width ∆a (model filter)

I replacing each
delay by M delays: Hb(z) = Ha(zM)

I masking filter Hc(z)

I resulting frequency response:
Hd(e jω) = Hb(e jω)Hc(e jω)
with transition width ∆a/M

I masking filter He(z)

I resulting frequency
response: Hf (e jω) = Hb(e jω)He(e jω)
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Narrow Band Filter Design

I This describes a method of deriving sharp filters (∆a/M) from
filters with much wider transition band (∆a)

I Advantages: only a few coefficients in the model filter are
nonzero, so the complexity is very low

I Problem: only suitable for narrow-band filters, because the
passband bandwidth is reduced by the same factor
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Arbitrary Bandwidth Design

Consider a filter Fc complementary to the masking filter Fa:

I z-transform of the symmetric linear phase filter Fa:

Fa(z) = z−
N−1

2 Fa,ZP(z)

where Fa,ZP(z) is a zero-phase filter and N is odd

I the complementary filter Fc :

Fc(z) = z−
N−1

2 (1− Fa,ZP(z))

I this results in
Fc(z) = z−

N−1
2 − Fa(z)
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Complementary Filter Pair

Fc can be implemented by subtracting the output of Fa from a
delayed version of the input:

without extra delays:
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Masking Filters

If two masking filters, FMa and FMc for Fa and Fc , are used, it’s
possible to design wide-band sharp filters:

F (z) = Fa(zM)FMa(z) + (z−
N−1

2 − Fa(zM))FMc(z)
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Arbitrary Bandwidth Filter Design

Arbitrary Bandwidth Masking Principle:

I model filter Fa, cutoff frequencies θ and φ

I complementary filter Fc

I replacing
each delay of Fa and Fc by M delays to
get periodic, complementary model filters

I masking filters FMa and FMc

I resulting frequency response
F (e jω) with band edges ωP and ωS

I other masking filters FMa and FMc

I resulting frequency response F (e jω)
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Arbitrary Bandwidth Filter Design

One can distinguish two cases:

I Case1: the frequency response of F near the transition band is
determined mainly by Fa, pass- and stopband is defined by

ωP =
2mπ + θ

M
, ωS =

2mπ + φ

M

I Case2: mainly determined by Fc , then pass- and stopband is
defined by

ωP =
2mπ − φ

M
, ωS =

2mπ − θ
M
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Narrow Band Filter Design
Arbitrary Bandwidth Filter Design

Synthesis Problem

In a synthesis problem the following has to be considered:

I ωP and ωS are given and m,M,θ,φ must be determined

I M should be choosen that the overall complexity of the filter
is minimized

I this leads to an optimization problem:
for increasing M the masking filters must be sharper (higher
complexity) and the model filter can be broader (lower
complexity)
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Ripples of F

In this section the ripples of the overall filter F (e jω) are analyzed:

I let G (ω) be the desired value and δ(ω) the deviation from this
value for each filter

I for F (e jω) this leads to:

G (ω) + δ(ω) = (GMa(ω) + δMa(ω))(Ga(ω) + δa(ω))

+(GMc(ω) + δMc(ω))(1− Ga(ω)− δa(ω))

I we examine the effects of Fa, FMa and FMc in three frequency
ranges
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Ripples, Fr. Range 1 + 2

I Frequency Range 1: GMa(ω) = GMc(ω) = 1 (passband)

G (ω) = 1

Ga(ω) = 1, δ(ω) ≈ δMa(ω)

Ga(ω) = 0, δ(ω) ≈ δMc(ω)

I Frequency Range 2: GMa(ω) = GMc(ω) = 0 (stopband)

G (ω) = 0

Ga(ω) = 1, δ(ω) ≈ δMa(ω)

Ga(ω) = 0, δ(ω) ≈ δMc(ω)
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Don’t Care Bands

Therefore FMa and FMc could be interpreted as low-pass filters
with don’t care bands within their pass- and stopbands:

These don’t care bands help to reduce the complexity of the
masking filters.
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Ripples, Fr. Range 3

Frequency Range 3: GMa(ω) 6= GMc(ω), transition band

I here δ(ω) is a function of δa(ω), δMa(ω) and δMc(ω)

I however, it is possible to design the filter Fa such that δa(ω)
partially compensates δMa(ω) and δMc(ω)

Georg Holzmann Frequency-Response Masking FIR Filters



Introduction
Frequency Response Masking

Parameter Optimization
Examples

Conclusion

Ripples of F
Optimizing F and M
Further Optimization

Ripples, Fr. Range 3

Frequency Range 3: GMa(ω) 6= GMc(ω), transition band

I here δ(ω) is a function of δa(ω), δMa(ω) and δMc(ω)

I however, it is possible to design the filter Fa such that δa(ω)
partially compensates δMa(ω) and δMc(ω)

Georg Holzmann Frequency-Response Masking FIR Filters



Introduction
Frequency Response Masking

Parameter Optimization
Examples

Conclusion

Ripples of F
Optimizing F and M
Further Optimization

Optimization of F

Fa has to be designed to compensate for δMa(ω) and δMc(ω)

I a linear equation relating δ(ω) and Fa must be obtained:

δ(ω) = Fa,ZP(Mω)(GMa(ω) + δMa(ω)− GMc(ω)− δMc(ω))

+GMc(ω) + δMc(ω)− G (ω)

I now the minimization of |δ(ω)| in the transition band is a
linear programming filter design problem and can be solved by
a standard mathematical programming package
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Optimization of M

I there is no closed-form analytic expression for finding the
optimum M (in the paper from 1986)

I a good choice of M can be obtained by esimating the filter
complexity for each M (nonzero multipliers) and then
selecting the M which corresponds to the lowest estimate

I however, many more recent papers address the right selection
of the parameter M and suggest optimized designs
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Multistage Frequency Response Masking Design

The model and masking filters may again be synthesized using the
frequency response masking technique, producing a multistage
frequency response masking design:

Optimizing this technique is again subject of many more recent
papers.
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Powers-of-Two Design Technique

I the complexity of the filter may be further reduced by
constraining all the coefficient values to be a sum or difference
of two powers-of-two using the powers-of-two design technique

I in this case, the multiplication can be performed just by using
shifts and adds
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Single-Stage Design

I The single-stage FRM low-pass filter, using the powers-of-two
design technique, should meet the following specifications:

I bandedges at 0.3 and 0.305 sampling frequencies, maximum
passband deviation is 0.1 dB and minimum stopband
attenuation is -40 dB

I this filter requires 202 shift-add operations per sampling
interval, whereas the infinite precision minimax optimum
design requires 383 multiply and 382 add operations
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Single-Stage Design Frequency Response

Frequency Response of the single-stage FRM low-pass filter:
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Multi-Stage Design

I Now a multi-stage FRM low-pass filter with the following
specifications should be designed:

I bandedges at 0.2 and 0.2001 sampling frequencies, maximum
passband deviation is 0.05 dB and minimum stopband
attenuation is -50 dB

I a five stage design was used with M1 = M2 = M3 = M4 = 4
and M5 = 3

I the total number of multipliers is 125, whereas the infinite
precision minimax optimum design requires 12055
multiplications (!)
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Conclusion

I in the frequency-masking technique a model filter and its
complementary filter is generated

I then each delay of these filters is replaced by M delays

I this results in periodic, complementary model filters with
much sharper transition bands

I finally two masking filter extract the desired band
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Conclusion

I this technique allows one to design sharp low-pass, high-pass,
bandpass and bandstop linear phase filters with arbitrary
passband bandwidth

I the complexity of the resulting filter is very low, because only
a small fraction of its coefficients are nonzero

I with additional optimization methods (like multiplierless or
multi-stage design), which is subject of many recent papers, it
is possible to reduce the complexity even more

Georg Holzmann Frequency-Response Masking FIR Filters



Introduction
Frequency Response Masking

Parameter Optimization
Examples

Conclusion

Conclusion

I this technique allows one to design sharp low-pass, high-pass,
bandpass and bandstop linear phase filters with arbitrary
passband bandwidth

I the complexity of the resulting filter is very low, because only
a small fraction of its coefficients are nonzero

I with additional optimization methods (like multiplierless or
multi-stage design), which is subject of many recent papers, it
is possible to reduce the complexity even more

Georg Holzmann Frequency-Response Masking FIR Filters



Introduction
Frequency Response Masking

Parameter Optimization
Examples

Conclusion

Conclusion

I this technique allows one to design sharp low-pass, high-pass,
bandpass and bandstop linear phase filters with arbitrary
passband bandwidth

I the complexity of the resulting filter is very low, because only
a small fraction of its coefficients are nonzero

I with additional optimization methods (like multiplierless or
multi-stage design), which is subject of many recent papers, it
is possible to reduce the complexity even more

Georg Holzmann Frequency-Response Masking FIR Filters



Introduction
Frequency Response Masking

Parameter Optimization
Examples

Conclusion

References

I Yong Ching Lim; Frequency-Response Masking Approach for
the Synthesis of Sharp Linear Phase Digital Filters; 1986,
IEEE transactions on circuits and systems

I Julius O. Smith; Introduction to Digital Filters; 2006, Center
for Computer Research in Music and Acoustics (CCRMA),
Stanford University

I Yong Ching Lim and Yong Lian; The Optimum Design of
One- and Two-Dimensional FIR Filters Using the Frequency
Response Masking Technique; 1986, IEEE transactions on
circuits and systems

Georg Holzmann Frequency-Response Masking FIR Filters



Introduction
Frequency Response Masking

Parameter Optimization
Examples

Conclusion

Questions

Questions ... ?

Georg Holzmann Frequency-Response Masking FIR Filters


	Introduction
	Introduction to FRM Filters
	Filters Preserving Phase

	Frequency Response Masking
	Narrow Band Filter Design
	Arbitrary Bandwidth Filter Design

	Parameter Optimization
	Ripples of F
	Optimizing F and M
	Further Optimization

	Examples
	Conclusion

