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First, we will develop the short – time Fourier transform ( STFT  ) and its relation to filter 

banks and then the wavelet transform and its relation to multirate filter banks. 

 

Therefore it is much easier to understand, if first the discret time STFT  and afterwards 

the continuous time STFT will be introduced. Followed by continuous wavelet transform 

and discret wavelet transform. 
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time – frequency plot = Spectogram

SHORT-Time FOURIER TRANSF.

figure 1: STFT processing in time

figure 2: spectogram

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In short – time Fourier transform, a signal x(n) is multiplied with a window v(n)  

( typically finite in duration ).  The Fourier – transform of the time domain product 

x(n)v(n) is computed, and then the window is shifted in time, and the FT of the new 

product computed again.  ( figure 1) 

This operation results in a separate FT for each location  m of the center of the window, 

which is typically an integer multiple of some fixed integer K ). (figure 2) 
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Definition:

( ) ∑
∞

−∞=

−−=
n

njj
STFT emnvnxmeX ωω )()(,

m . . . time shift – variable  
( typically an integer multiple of some fixed integer K)

ω . . . frequency – variable πωπ <≤−

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From above discussion it is clear that the STFT can be written mathematically as shown 

in the slide, where ω is continuous and takes the usual range between – π and + π. 
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( )ωjeH2. LTI – System                : ideal  lowpass filter

Traditional Fourier Transform as a Filter Bank

Interpretation using Bandpass Filters

1. Modulator : performs a frequency shift
nje 0ω−

figure 3: Representation of FT in terms of  a linear system

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Before interpreting the STFT in terms of filter banks, we will begin by representing a 

filter bank interpretation for the traditional Fourier – Transform. (figure 3) 

 Figure 3 represents only one channel for one specific frequency ω0. 
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Why is an ideal lowpass filter ?( )ωjeH

Impulse Response h(n) = 1  for all n

( ) ( )ωπδωω
a

n

njj enheH 2)( == ∑
∞

−∞=

− πωπ <≤−

only zero - frequency passes
every other frequency is completely supressed

( )0)( ωjeXny = for all n

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
h(n) = 1 for all n. This system is evidently unstable, but let us ignore these fine details for 

the moment. 

δa(ω) is the Dirac delta function. 

 

Summarizing, the process of evaluating  ( )0)( ωjeXny =  can be looked upon as a linear 

system, which takes the input x(n) and produces a constant output y(n). 

 

Therefore, the FT operator is a bank of modulators followed by filters. This system has 

an uncountably infinite number of channels. 
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STFT as a Bank of Filters

( ) ∑
∞

−∞=

−− −=
n

nmjmjj
STFT emnvnxemeX )()()(, ωωω

)()( ))(()( nmjnmj enmvemnv −− −−=− ωω

Expansion of Definiton for further insight!

with:

Convolution of x(n) with the impulse response of the LTI – System njenv ω)(−
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In most applications, v(n) has a lowpass transform V(ejω).

)( nv − )( ωjeV −

njenv 0)( ω− )( )( 0ωω−− jeV

figure 4: Representation of STFT in terms of  a linear system

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows the interpretation of the STFT in terms of  a filter bank. ( Again, only one 

channel can be seen). 

The first is an LTI filter followed by the modulator. 
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figure 5: Demonstration of how STFT works

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 demonstrates how the STFT works. 

(a) FT of an arbitrary choosen input signal x(n) 

(b) the window – transform and its shifted version 

(c) output of LTI filter 

(d) traditional Fourier transform of  ( )neX j
STFT ,0ω   

 

Hence, the STFT can be looked upon as a filter bank, with infinite number of filters ( one 

per frequency ) ! 
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In practice, we are interested in computing the Fourier transform at a discrete
set of frequencies

0 ≤ ω0 < ω1 < … < ωM-1 < 2π

Therefore the STFT reduces to a filter bank with M bandpass filters

)()( )( kjj
k eVeH ωωω −−=

figure 6: STFT viewed as a filter bank
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Uniform DFT bank

If the frequencies ωk are uniformly spaced, then the system
becomes the uniform DFT bank.

The M filters are related as in the following manner

( )k
k zWHzH 0)( = 10 −≤≤ Mk M

j
eW

π2
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

− )2(

0)(
k

M
jj

k eHeH
πωω )()(0

ωω jj eVeH −=

The uniform DFT bank is a device to compute the STFT at uniformely
spaced frequencies.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The frequency responses ( )ωj
k eH  are uniformly shifted versions of ( )ωjeH 0  
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Decimation

if passband width of V(ejω) is narrow

output signals yk(n) are narrowband lowpass signals

this means, that yk(n) varies slowly with time 

According to this variying nature, one can exploit that to decimate the
output.
Decimation Ratio of M = moving the window v(k) by M samples at a time 

if filters have equal bandwidth

Mnk =

maximally decimated analyses bank

figure 7: Analysis bank with decimators

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 shows a decimated STFT system, where the modulators have been moved past 

the decimators. 

 

In a more general system nk could be different for different k, and moreover  may 

not be derived from one prototype by modulation. Such a system, however, does not 

represent the STFT obtainable by moving a single window across the data x(n).  this 

systems will be admitted in the wavelet transform. 

( )zH k
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Time – Frequency Grid

Uniform sampling of both, ‘time’ n  and ‘frequency’ ω

Time spacing M corresponds to moving the window M units ( = samples ) at a time.

frequency spacing of adjacent filters  = 
M
π2

figure 8: time – frequency grid
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Inversion of the STFT

From traditional Fourier – viewpoint 

( )meX j
STFT ,ω is the FT. from the time domain product

)()( mnvnx −

( )∫=−
π

ωω ω
π

2

0

,
2
1)()( demeXmnvnx njj

STFT

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For example, if we set n = m we obtain the STFT inversion formula for x(m) as long as 

v(0) exists. If it does not, we can pick some other value of m. 
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Another inversion formula is given by:

( ) ( )∫ ∑ ⎟
⎠

⎞
⎜
⎝

⎛
−=

∞

−∞=

π
ωω ω

π

2

0

*,
2
1)( demnvmeXnx nj

m

j
STFT

which is provided by ( )∑ =
m

mv 12

if but finite divide right side of the formula by ( )∑ ≠
m

mv 12 ( )∑m
mv 2

but if window energy is infinite one cannot apply this formulation
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Filter Bank Interpretation of the Inverse

With              as synthesis - filter
Reconstruction can be done by the following synthesis bank:

)(zFk

typically               for all kMnk =

figure 9: synthesis – bank used to reconstruct x(n)
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The z – Transformation of          is given by( )nx̂

( ) ( ) ( )∑
−

=

=
1

0

ˆ
M

k
k

n
k zFzXzX k

in time – domain

( ) ( ) ( )∑ ∑
−

=

∞

−∞=

−=
1

0

ˆ
M

k m
kkk mnnfmxnx

( ) ( )∑ ∑
−

=

∞

−∞=

−=
1

0

)(
M

k m
kk

mnj
kk mnnfemny kkω

( ) tsCoefficienSTFTmny kk −K

Reconstruction is stable, if the filters           are stable!)(zFk

Perfect reconstruction will be obtained, if ( ) ( )nxnx =ˆ
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Basis Functions and Orthonormality

Functions of interest

( ) ( ) functionsbasismnnfn kkkm K−=̂η

For these double indexed functions ( basis functions ), 
the orthonormality property means that

( ){ }nkmη

( ) ( ) ( ) ( )∑
∞

−∞=

−−=−−
n

kkkk mmkkmnnfmnnf 212122211
*
1 δδ

should be zero, except for those cases where 2121 mmandkk ==

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remember:  k . . . filter number  m . . . time shift 
 
How should we design the filters ( )zFk  in order to ensure this orthonormality property ? 

Therefore, the paraunitary property of the polyphase matrix is sufficient! 
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The Continuous - Time Case

Main points:

( ) ( ) ( ) ( )∫
∞

∞−

Ω−−=Ω STFTdtetvtxjX tj
STFT ττ,

( ) ( ) ( ) ( )STFTinvdejXtvtx tj
STFT .,

2
1
∫
∞

∞−

Ω ΩΩ=− τ
π

τ

( ) ( ) ( ) ( )∫ ∫
∞

∞−

Ω
∞

∞−

Ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Ω= STFTinvdedtvjXtx tj

STFT .,
2
1 * τττ
π

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because of the close resemblance to the discrete – time case, we only summarize the 

main points for the continuous – time case. 

 

Historically, the STFT was first developed for the continuous – time case by Dennis 

Gabor. 
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Choice of “Best Window”

Root Mean Square duration of window function v(t) in

time domain Dt frequency domain Df

( )∫
∞

∞−

= dttvt
E

Dt
222 1 ( )∫

∞

∞−

ΩΩΩ= djV
E

D f
222

2
1
π

with:
E . . . window energy ( )∫= dttvE 2

Uncertainty principle:
5.0≥ft DD

Iff Gaussian – window, this inequality becomes an equality !

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dt  is the rms time domain duration and Df the rms frequency domain duration of the 

window. 
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Filter Bank Interpretation

figure 10: continuous – STFT

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 shows again the filtering interpretation for the continuous – time STFT. 
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THE WAVELET TRANSFORM

Disadvantage of STFT
uniform time – frequency box ( ).., constDconstD ft ==

The accuracy of the estimate of the Fourier transform 
is poor at low frequencies, and improves as the frequency increases.

Expected properties for a new function:

window width should adjust itself with ‘frequency’
as the window gets wider in time, also the step sizes 
for moving the window should become wider.

These goals are nicely accomplished by the wavelet transform.
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Passing from STFT to Wavelets

Step 1:

Giving up the STFT modulation scheme and obtain filters

( ) ( ) egerkfactorscalingatahath kk

k int,12 =>= −−
K

in the frequency domain:

( ) ( )Ω=Ω kk

k jaHajH 2

all reponses are obtained by frequency – scaling of a prototype response ( )ΩjH

This is unlike the case of STFT, where all filters were obtained by frequency – shift of a 

prototype. 

The scale factor 2
k

a −  is meant to ensure that the energy ( )∫
∞

∞−

dtthk
2  is independent of k.  

 

 

 

 

 

 

 

 

 

 

 



SPSC – Signal Processing & Speech Communication Lab

Professor Horst Cerjak, 19.12.2005
24

Georg Holzmann, Christian Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks 

Example:

Assuming             is a bandpass with cutoff frequencies α and β.  
Also                        and the center frequency should be the 
geometrical mean of the two cutoff edges

( )ΩjH
αβ 2,2 ==a

222 kk
k

−− ==Ω ααβ

figure 11: frequency – response obtained by scaling process
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Ratio:

( )
2

1
2

2
=

−
=

Ω− −

−

αβ
αβ

k

k

kfrequencycenter
bandwidth

is independent of integer k

In electrical filter theory such a system is often said to be a ‘constant Q’ system!

( Q ... Quality factor
bandwidth

frequencycenterQ −
= )
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filter ouputs can be obtained by:

( ) ( )( )∫
∞

∞−

−Ω−−
− dttahtxea kjk

k ττ2

Step 2:

( ) ↓→↓Ω→↑ SampleratejHofbandwidthk k

or in time domain

↑→↑→↑ sizesteplengthwindowk

 

Since the bandwidth of  is smaller for larger k, we can sample its output at a 

correspondingly lower rate.  Viewed in time domain, the width of  is larger so 

that we can afford to move the window by a larger step size! 

( ΩjH k )

( )thk
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Therefore:
sizestepTaegernTna kk KK ,int=τ

hence:

( )( ) ( )tanThtTnaah kkk −− −=−

Summarizing, we are computing:

( ) ( ) ( )∫
∞

∞−

−−
−= dttanThtxankX kk

DWT
2,

( ) ( ) ( )∫
∞

∞−

−= dttTnahtxnkX k
kDWT ,

DWT...Discrete Wavelet Transform
figure 12: Analysis bank of DWT 

 
This can be done by replacing the continuous variable τ as shown in the slide. 

 

The modulation factor has been omitted. τkje Ω−

What we can see is, that the above integral represents the convolution between x(t) and 

, evaluated at a discrete set of points na( )thk
kT. In other words, the output of the 

convolution is sampled with spacing akT. (figure 12 is a schematic of this for a = 2). 
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Time Frequency Grid

.constDD ft =
figure 13: time – frequency grid

 
Frequency spacing is smaller at low frequencies, and the corresponding time – spacing is 

larger. 
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General Definition of the Wavelet Transform

( ) ( )∫
∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= dt

p
qtftx

p
qpX CWT

1,

p,q ... real – valued continuous variables

According to former definition:

kap = Tnaq k= ( ) ( )thtf −=

( ) ( ) tscoefficienwaveletnkXandqpX DWTCWT KKK,,
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Inversion of Wavelet Transform

( ) ( ) ( )∑∑=
k n

nkDWT tnkXtx ψ,

where              are the basis functions( )tnkψ

Filter Bank Interpretation of Inversion

Reconstruction of x(t) as a designing problem of the following synthesis filter bank

( ) sequencenkX DWT K,

( ) timeincontinuousjFk KΩ

( ) ( ) ( )∑∑ −=
k

k

n
kDWT nTatfnkXtx ,ˆ

output of synthesis filter bank :

figure 14: synthesis bank

 
Figure 14 shows the synthesis filter bank. 

We have to be careful with the interpretation of this figure. Since  is a 

sequence, the signal which is input to the continuous –time filter 

( nkX DWT , )

( )ΩjFk  is actually an 

impulse train. 
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All synthesis filters are again generated from a fixed prototype synthesis filter 
f(t) ( mother wavelet )

( ) ( )tafatf kk

k
−−

= 2

Substituting this in the preceding equation and assuming perfect reconstruction, we get

( ) ( ) ( )∑∑ −= −−

k n

kk

DWT nTtafankXtx 2,

with:

( ) ( ) ( ) ( ) ( )[ ] functionsbasisofsetTnataanTtaattft kkkkk

nk K−=−=→= −−−− ψψψψ 22

using this, we can express each basis function in terms of the filter ( )tfk

( ) ( )Tnatft k
knk −=ψ
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Orthonormal Basis

Of particular interest is the case where             is a set of orthonormal 
functions

( ){ }tnkψ

Therefore, we expect:

( ) ( ) ( ) ( )∫
∞

∞−

−−= mnlkdttt mlnk δδψψ *

using Parseval’s theorem, this becomes

( ) ( ) ( ) ( )∫
∞

∞−

−−=ΩΩΨΩΨ mnlkdjj mlnk δδ
π

*

2
1

and get :

( ) ( ) ( )∫
∞

∞−

= dtttxnkX nkDWT
*, ψ
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Comparing these results, we can conclude:

( ) ( )tnTaht k
knk −= *ψ

And in particular for k = 0 and n = 0:

( ) ( ) ( )thtt −== *
00 ψψ for the orthonormal case ( ) ( )thtf kk −= *

Discrete – Time Wavelet Transform

Starting with the frequency domain relation and a scaling factor a = 2

( ) ( ) egerenonnegativaiskeHeH
kjj

k int2 Kωω =

for highpass              and k = 1, k = 2( )ωjeH

figure 15: Magnitude responses

 



SPSC – Signal Processing & Speech Communication Lab

Professor Horst Cerjak, 19.12.2005Georg Holzmann, Christian Wallinger 12.06.07 Wavelet T. - Relation to Filter Banks 

Let G(z) be a lowpass with response

Using QMF – banks or its 
equivalent

figure 16: Magnitude – response of G(z) 

figure 17: 3 level binary tree-structured QMF figure 18: equivalent 4-channel system
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Responses of the filters ( ) ( ) ( ) ( ) ( ) ( ),......,, 422 zHzGzGzHzGzH

Defining the Discrete –Time Wavelet Transform

( ) ( ) ( )∑
∞

−∞=

+ −≤≤−=
m

k
kk Mkmnhmxny 20,2 1

( ) ( ) ( ) ( )∑
∞

−∞=

−
−− −=

m
imeiscrete

M
MM WTTDmnhmxny ,2 1

11

figure 19: combinations of H(z) and G(z)
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Inverse Transform

( ) ( ) ( ) ( ) ( ) K,, 2
10 zGzHzFzHzF sss ==

figure 20: synthesis filters
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For perfect reconstruction ( ) ( )nxnx =ˆ we can express

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )11 2
11

2
22

4
11

2
00 ...

−−

−−−− ++++=
MM

zYzFzYzFzYzFzYzFzX MMMM

and in time domain:

( ) ( ) ( ) ( ) ( )∑ ∑ ∑
−

=

∞

−∞=

∞

−∞=

−
−−

+ −+−=
2

0

1
11

12 22
M

k m m

M
MM

k
kk mnfmymnfmynx
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Main References

Multirate Systems and Filter Banks

(Prentice Hall Signal Processing Series)
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