
Hidden Markov Model Basics

Patrick Gampp, 9931027

Seminar: Advanced Signal Processing, SS 2008
Supervisor: Dr. Michael Pucher

Abstract

This document wants to give a basic introduction to Hidden Markov
Models (HMMs) regarding the field of speech communication and speech
synthesis, especially.

1 Markov Chain

A Markov chain like depicted in Fig. 1 has a set ofN distinct states S1, S2, . . . , SN ,
at regularly spaced discrete times, the system changes its state. The time in-
stants are denoted with t = 1, 2, . . .. The actual state at time instance t is
denoted as qt. An important feature of this probabilistic model is the Markov
property. Given the present state, the future and past states are independent.

P [qt = Sj |qt−1 = Si, qt−2 = Sk, · · · ] = P [qt = Sj |qt−1 = Si] (1)

The state transition probability is defined as:

aij = P [qt = Sj |qt−1 = Si], 1 ≤ i, j ≤ N, (2)

with the properties:
aij ≥ 0 (3)

Figure 1: Markov chain with 5 states S1 to S5 and state transitions axx

1



Figure 2: Hidden Markov Model: A doubly embedded stochastic process with
an underlying hidden, not observable process, that procudes a sequence of ob-
servations.

N∑
j=1

aij = 1 (4)

An Markov chain could also be called an observable Markov model since the
output of the process corresponds with the observed states, which is a physical
event.

2 Extension to Hidden Markov Model

The Markov models, where each state corresponds to an observable output is
too restrictive to be used for many problems. In speech communication it is not
so easy to do one-to-one mapping from speech to a word symbol. There are for
instance different symbols that produce the same sound. Furthermore, there is
a large variation in speech. Speech is always different for other speakers. Speech
even varies for the same speaker speaking in different moods or environments,
eg. where the person whispers or screams. As a further difficulty in speech,
there are no explicit boundaries that can be detected. Speech waveform is not
a concatenation of static patterns.

A hidden Markov model is a doubly embedded stochastic process, where the
actual states producing the output are hidden. Additionally, there is a second
set of stochastic processes, which produces the sequence of observations. This
can be seen in Fig. 2.

3 Elements of an Hidden Markov Model

A HMM can completely described by the following elements.
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1. N is the number of the hidden states in the model. Individual states are
denoted as S = {S1, S2, . . . , SN}, and the state at time t as qt.

2. M is the number of distinct observation symbols for each state and is
called the alphabet size and correspond to the physical output of the
system which is modelled.

3. The state transition probability distribution A = {aij}, as defined in Eq.
(2).

4. The observation symbol probability distribution in state j, B = {bj(k)},
where

bj(k) = P [vk at t|qt = Sj ], 1 ≤ j ≤ N and 1 ≤ k ≤M (5)

5. The initial state distribution, describing the probability of beginning the
state sequence in a certain initial state.

πi = P [q1 = Si], 1 ≤ i ≤ N (6)

6. The observation sequence is denoted as O = O1O2 · · ·OT .

λ represents the complete parameter set of a model, where λ = (A,B, π).

4 The Three Basic Problems and their Solutions

In order to work with HMMs three basic problems have to be solved.

• Problem 1: Given the observation sequence O and model λ, how can the
probability of a given model producing the output sequence O P (O|λ)
efficiently be computed? A solution is the Forward algorithm.

• Problem 2: Given the observation sequence O and the model λ, how can
a inner state sequence Q = q1q2 . . . qT which best explains the obervations
O? A solution is the Viterbi algorithm.

• Problem 3: Given the observation sequence O, how can the probability of
a observation sequence being produced by a model λ, i.e. how to choose
model parameters λ in order to maximize P (O|λ)?. A solution is the
Baum–Welch algorithm.

4.1 Forward-Algorithm

A forward variable is the probability of a partial observation sequence until time
t, given the model λ and is defined as:

αt(i) = P (O1O2 · · ·Ot, qt = Si|λ) (7)

αt(i) can be solved inductively:
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Figure 3: Left: Sequence of operations required for the computation of the
forward variable. Right: Computation of forward variable including all states i
and times t.

1. Initialization:
α1(i) = πibi(O1), 1 ≤ i ≤ N. (8)

2. Induction:

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(Ot+1) 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ N (9)

3. Termination:

P (O|λ) =
N∑

i=1

αT (i). (10)

αt(i) is computed along t and for every state S as it can be seen in Fig. 3.
When the final T is reached, the likelihoods over all states are summed up.

4.2 Viterbi-Algorithm

The highest probability along a single path at time t that ends in state Si is
defined by:

δt(i) = max
q1,q2,...,qt−1

P [q1q2 . . . qt = i, O1O2 · · ·Ot|λ] (11)

By induction we have:

δt+1(j) = [max
i
δt(i)aij ] · bj(Ot+1). (12)

The basic idea of this algorithm is to retrieve the most likely state sequence for
the given observation sequence O by backtracking the argument shown in Fig.
4, i.e. which maximized Eq. (12). The array where these values are stored is
Ψ. The algorithm consists of the following steps:
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Figure 4: Backtracking of most likely path, indicated by the red line, with
Viterbi algorithm.

1. Initialization:
δ1(i) = πibi(O1), 1 ≤ i ≤ N (13)

ψ1(i) = 0 (14)

2. Recursion:

δt(j) = max
1≤i≤N

[δt−1(i)aijbj(Ot)], 2 ≤ t ≤ T and 1 ≤ j ≤ N (15)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ], 2 ≤ t ≤ T and 1 ≤ j ≤ N (16)

3. Termination:
P ∗ = max

1≤i≤N
[δT (i)] (17)

q∗T = arg max
1≤i≤N

[δT (i)] (18)

4. Backtracking:

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, . . . , 1. (19)

4.3 Baum-Welch-Algorithm

The probability of being in state Si at time t and state Sj at time t + 1 with
given model λ and observation sequence O is:

ξt(i, j) = P (qt = Si, qt+1 = Sj |O, λ) (20)

According to the forward variable, a backward variable βt(i) is defined:

βt(i) = P (Ot+1Ot+2 · · ·OT |qt = Si, λ). (21)

In terms of forward and backward variables, xit(i, j) can be written as:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
=

αt(i)aijbj(Ot+1)βt+1(j)∑N
i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

(22)
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Figure 5: Illustration of the sequence of operations required for the computation
of ξt(i, j) in the Baum–Welch algorithm.

γt(i) is the probability of being in state Si at time t, given observation
sequence and the model:

γt(i) = P (qt = Si|O, γ) (23)

The relation between γt(i) and ξt(i, j) is:

γt(i) =
N∑

j=1

ξt(i, j) (24)

Therefore, one can say that
∑T−1

t=1 γt(i) is the number of expected number of
transitions from Si and

∑T−1
t=1 ξt(i, j) is the expected number of transitions

from Si to Sj . The parameters of the HMM are iteratively reestimated by the
following formulas:

π̄i = γ1(i) (25)

āij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1 γt(i)

(26)

b̄j(k) =

∑T
t=1 γt(j)

s.t.Ot = vk∑T
t=1 γt(j)

(27)

The iterations are profitable since Baum prooved, that P (O|λ̄) ≥ P (O|λ), i.e.
the model parameters are optimized with respect to the observation sequence till
they reach a limiting point. The result is called maximum likelihood estimate
of the HMM. The algorithm leads to a local maximum only, depending on the
initialized model parameter values.

The reestimation formulas can directly be derived by maximizing Baum’s
auxiliary function:

Q(λ, λ̄) =
∑
Q

P (Q|O, λ) logP (O,Q|λ̄) (28)
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The Baum–Welch algorithm is similar to the EM algorithm of statistics, in which
the expectation step corresponds to the calculation of the auxiliary function and
the modification step to the reestimation of λ.
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