Source/Filter - Model

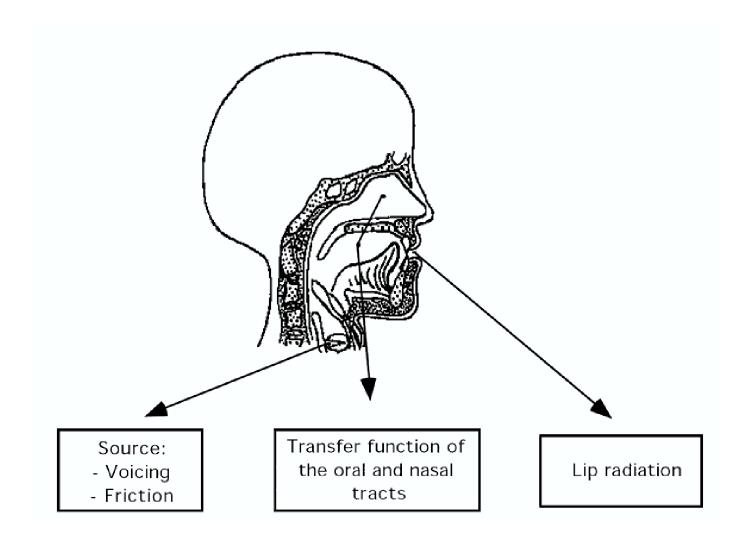
Flohberger Markus

maxiko@panacea.at

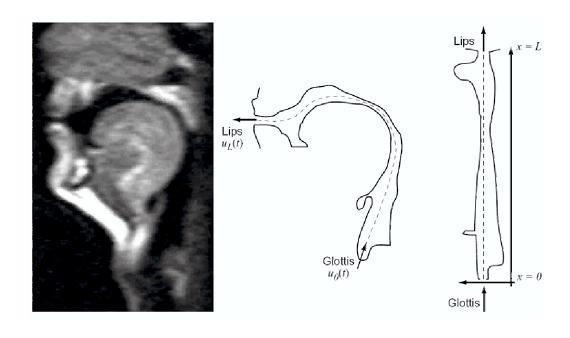
TU-Graz

Overview (1/2)

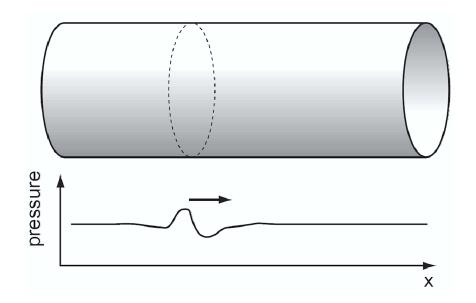
- Introduction to Source/Filter-Model
- Acoustic Tube Models
 - Lossless Uniform Tube
 - Nonuniform Tube: Considering Losses
 - Discrete—Time Model: Concatenated Tubes
- Linear Prediction
 - Assuming Stationarity
 - Block Oriented Adaptation
 - Efficient Computation



Overview (2/2)

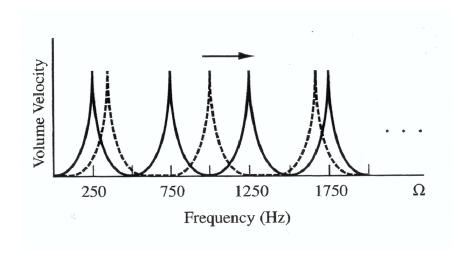

- Formant Synthesizer
 - Source Modelling
 - Vocal Tract Modelling
 - Example: Klatt Synthesizer

Introduction (1/1)


Acoustic Tube Models (1/7)

- Uniform Lossless Tube
- Nonuniform Tube: Considering Losses
- Discrete-Time Concatenated Tube Model

Lossless Uniform Tube Model (2/7)


- Constant cross—section
- Moving piston corresponds an ideal particle velocity source
- The open end represents the opened lips

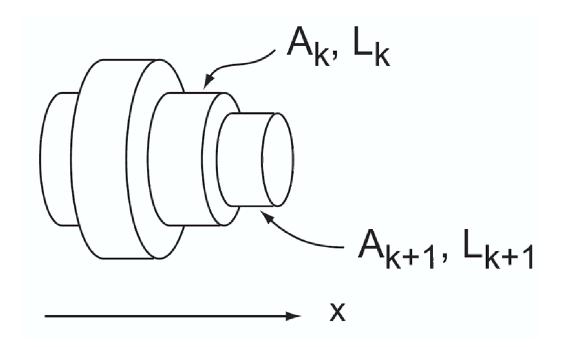
Lossless Uniform Tube Model (3/7)

The transfer function is described by its poles, which correspond to the peaks in the spectrum

$$V_a(s) = \frac{1}{\sum_{k=1}^{\infty} (s - s_k) (s - s_k^*)}$$


Complete Model (4/7)

- Wall Vibration
 - The walls move under the pressure induced by sound propagation
- Viscosity and Thermal Loss
 - Friction of air particles along wall
 - Heat loss through the vibrating wall
- Boundary Effects (Losses at in–/output)
 - Sound radiation is modelled by an acoustic impedance
 - Acoustic impedance for losses at glottis


Complete Model (5/7)

- The losses are modelled by partial differential equations coupled to the wave equation
- Can only be solved by numerical simulation
- Shift of resonant frequencies
- Alteration of bandwidths

Concatenated Tube Model (6/7)

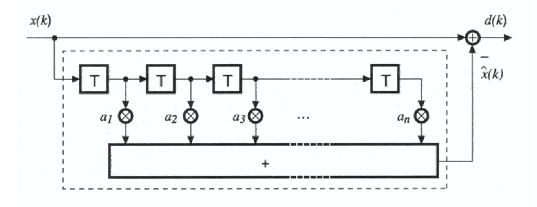
- Concatenation of short lossless tubes
- Energy loss only at boundaries (glottis, lips)
- Model is linear

Concatenated Tube Model (7/7)

- Boundary conditions (junctions, glottis r_G and lips r_L)
 - \rightarrow Pressure and volume velocity continuous in time and space
- At discontinuities occurs propagation and reflection
 - → Reflection coefficients are a function of the cross-section areas
- ullet All—pole transfer function V(z) is a function of the reflection coefficients
 - \rightarrow Estimate area functions, thus obtain V(z)
- Model not consistent with underlying physics, however formant bandwidths can be controlled with boundaries at glottis and lips

Linear Prediction (1/9)

- Signal sample can be described as a linear combination of the preceding samples
- Model coefficients are calculated by minimizing the mean square error between the predicted and the original signal
- The system is an all—pole linear filter that simulates the source spectrum and the vocal tract transfer function



Formulation (2/9)

Prediction Error:

$$d[n] = x[n] - \hat{x}[n] = v[n] - \sum_{k=1}^{m} (c_k + a_k) \cdot x[n-k]$$

if the predictor coefficients $a_k = -c_k$ then $d[n] = v[n] \rightarrow$ equals an inverse filtering

Stationarity (3/9)

$$E\left\{d[n]^2\right\} \stackrel{!}{=} min$$

- ullet c_k and h[n] are time—invariant
- v[n] is white noise sequence

$$\frac{\partial E\left\{d[n]^2\right\}}{\partial a_{\lambda}} = E\left\{2 \cdot d[n] \cdot \frac{\partial d[n]}{\partial a_{\lambda}}\right\} = -2 \cdot E\left\{d[n] \cdot x[n-\lambda]\right\} \stackrel{!}{=} 0$$
$$= -2 \cdot E\left\{\left[x[n] - \sum_{k=1}^{p} a_k \cdot x[n-k]\right] \cdot x[n-\lambda]\right\}$$

Normal Equations (4/9)

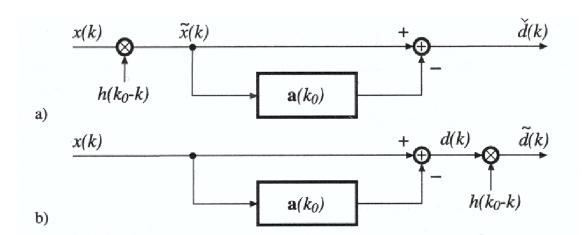
$$\frac{\partial E\left\{d[n]^2\right\}}{\partial a_{\lambda}} = -2 \cdot \varphi_{(x,x)}[\lambda] + 2 \cdot \sum_{k=1}^{m} a_k \cdot \varphi_{(x,x)}[\lambda - k] \stackrel{!}{=} 0$$

$$\begin{bmatrix} \varphi_{(x,x)}[1] \\ \varphi_{(x,x)}[2] \\ \vdots \\ \varphi_{(x,x)}[p] \end{bmatrix} = \begin{bmatrix} \varphi_{(x,x)}[0] & \varphi_{(x,x)}[-1] & \dots & \varphi_{(x,x)}[1-p] \\ \varphi_{(x,x)}[1] & \varphi_{(x,x)}[0] & \dots & \varphi_{(x,x)}[2-p] \\ \vdots & \vdots & \dots & \vdots \\ \varphi_{(x,x)}[p-1] & \varphi_{(x,x)}[p-2] & \dots & \varphi_{(x,x)}[0] \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix}$$

$$oldsymbol{arphi}_{(x,x)} = oldsymbol{R}_{(x,x)} \cdot oldsymbol{a} \ \Rightarrow \ oldsymbol{a} = oldsymbol{R}_{(x,x)}^{-1} \cdot oldsymbol{arphi}_{(x,x)}$$

Block Oriented (5/9)

- Vocal tract and source are time-varying
- Only slow changes assumed
 - Characteristics are fixed for a short–time interval
 - Approximation with window
- Length of window (time/frequency resolution)
- Type of window (e.g. Hamming)
 - Trade—Off between Side/Mainlobe characteristics
- Block length 10...30ms, sampling frequency 8kHz → N=80...240 samples

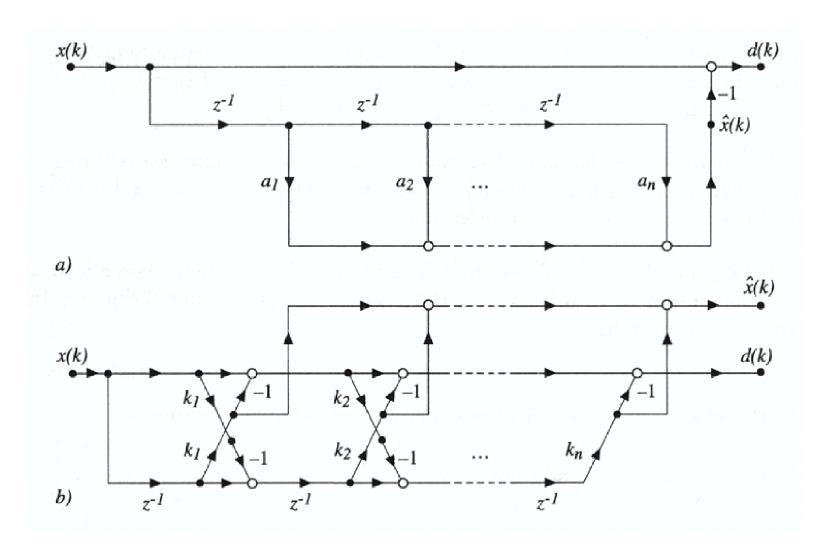

Methods (6/9)

• Autocorrelation Method: Window h[n] applied to x[n]

$$r = R_{(\tilde{x}, \tilde{x})} a$$

ullet Covariance Method: Window h[n] applied to d[n]

$$\hat{r}_0 = \hat{R}_{(x,x)}a$$



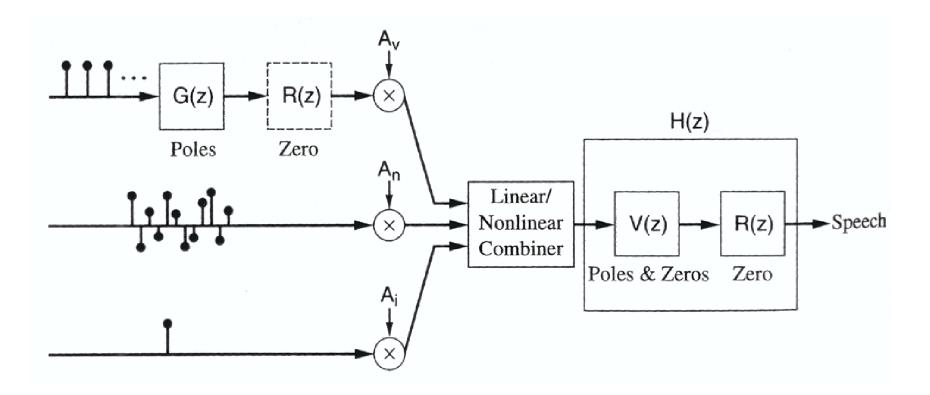
Levinson–Durbin–Algortihm (7/9)

- Effective algorithm for solving normal equation system of the autocorrelation method, delivers predictor coefficients a_k and reflection coefficients k_p
 - ullet Gauss algorithm: p^3 multiplications and additions
 - Recursive algorithm: p^2 multiplications and additions
- The predictor can be implemented in direct form or lattice structure

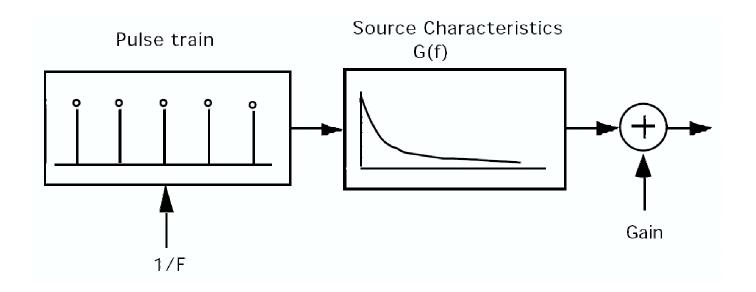
Levinson–Durbin–Algortihm (8/9)

Levinson–Durbin–Algortihm (9/9)

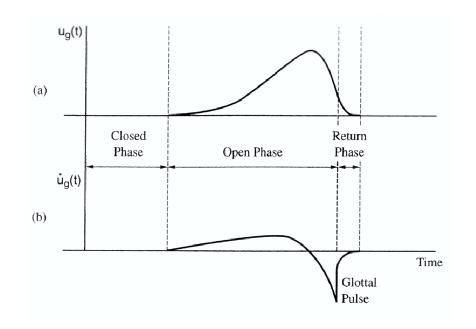
Computation


- Out of speech measurement the autocorrelation coefficients can be computed. After solving the recursion, the cross—sectional areas can be calculated.
- 2. Out of the cross—sectional areas the reflection and predictor coefficients and hence the transfer function of the vocal tract can be computed.
- $lue{}$ Comparison x[n] and d[n]
 - $lue{}$ Whitening in the spectrum of d[n]
 - $lue{}$ Reduction in dynamics in d[n]

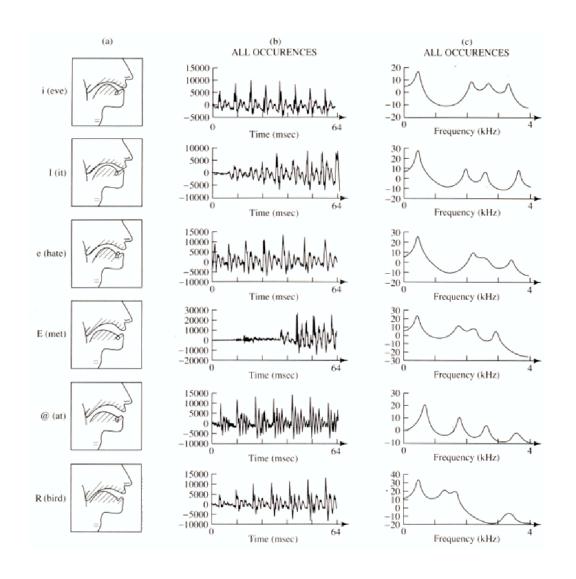
Formant Synthesizer (1/16)


- Based on the source/filter—theory of speech production
- Vocal tract transfer function can be modelled by simulating formant frequencies and formant amplitudes
- Artificial reconstruction of formant characteristics by exciting resonators by a source
 - Voicing Source → Simulates vocal fold vibration
 - Noise Generator → Simulates constriction in vocal tract
- Pros: Good restitution of the speech signal Cons: Automatic techniques are unsatisfactory

Speech Production Model (2/16)

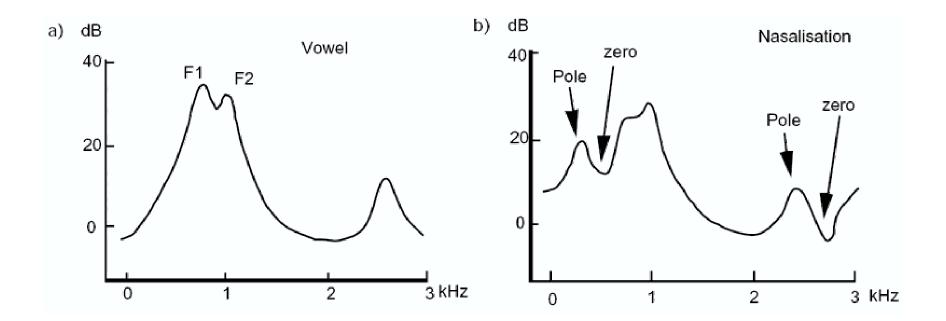

Voicing Source (3/16)

- Vocal folds are vibrating periodically (voiced sounds)
- Modelled as an impulse gernerator and a linear filter with frequency response G(f)

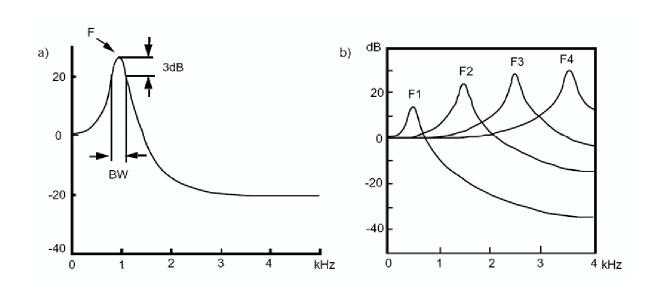

Models for G(f) (4/16)

- Low-pass filter with variable slope
- Mathematical function e.g. by Fant and Liljencrants

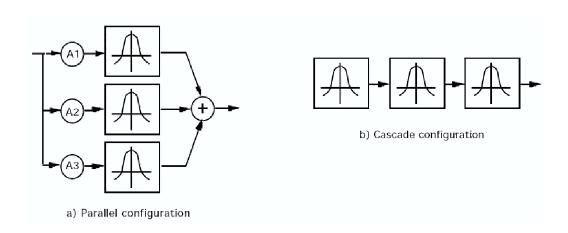
 Mechanical simulation of the vocal fold vibration (Animation!)


Vocal Tract Modelling (5/16)

Vocal Tract Modelling (6/16)


Vowels: Set of poles

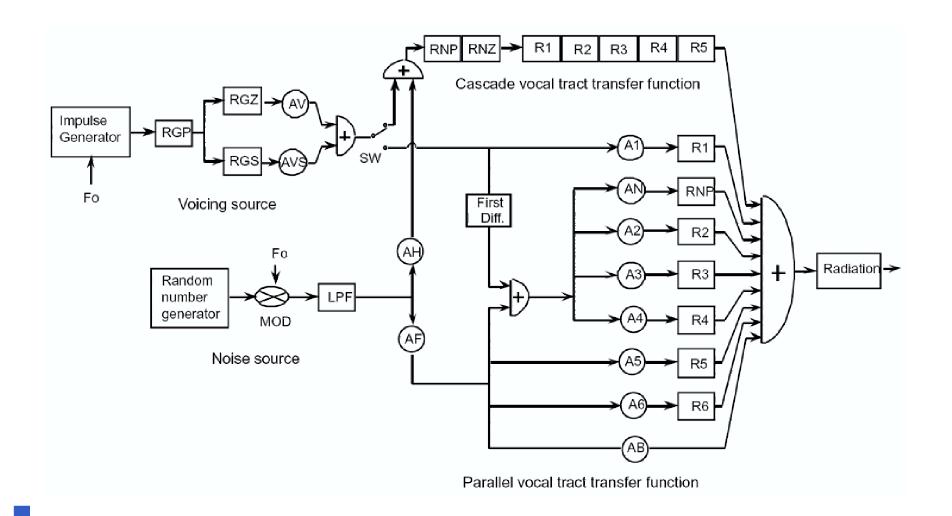
Nasalized Vowel: Set of zeros an poles


Vocal Tract Modelling (7/16)

- Formants modelled by bandpass–filter
- Anti–Formants modelled by bandstop–filter
- Parameters: Frequency and Bandwidth
- Spectrum modelled by superposition

Vocal Tract Modelling (8/16)

- Parallel Configuration
 - Control of each formant amplitude
 - Convenient for consonant production
- Cascade Configuration
 - Direct replica of formant energy distribution
 - Convenient for producing vowels


Klatt Formant Synthesizer (9/16)

Computer simulation of an electrical structure consisting of resonators in cascade/parallel

- Controlled by 40 parameters
- Male/Female Voice
- Two voicing sources
 - Vowels
 - Voiced fricatives
- Friction source

Klatt Formant Synthesizer (10/16)

Parameters (11/16)

Symbol	C/V	Min.	Max.	Name
DU	С	30	5000	Duration of the utterance (ms)
NWS	С	1	20	Update interval for parameter reset (ms)
SR	С	5000	20000	Output sampling rate (Hz)
NF	С	1	6	Number of formants in cascade branch
SW	С	0	1	0=Cascade, 1=Parallel tract excitation by AV
G0	С	0	80	Overall gain scale factor (dB)
F0	V	0	500	Fundamental frequency (Hz)
AV	V	0	80	Amplitude of voicing (dB)
AVS	V	0	80	Amplitude of quasi-sinusoidal voicing (dB)
FGP	V	0	600	Frequency of glottal resonator "RGP"
BGP	V	50	2000	Bandwidth of glottal resonator "RGP"

Parameters (12/16)

Symbol	C/V	Min.	Max.	Name
FGZ	V	0	5000	Frequency of glottal anti-resonator "RGZ"
BGZ	V	100	9000	Bandwidth of glottal anti-resonator "RGZ"
BGS	V	100	1000	Bandwidth of glottal resonator "RGS"
AH	V	0	80	Amplitude of aspiration (dB)
AF	V	0	80	Amplitude of frication (dB)
F1	V	180	1300	Frequency of 1st formant (Hz)
B1	V	30	1000	Bandwidth of 1st formant (Hz)
F2	V	550	3000	Frequency of 2nd formant (Hz)
B2	V	40	1000	Bandwidth of 2nd formant (Hz)
F3	V	1200	4800	Frequency of 3rd formant (Hz)
B3	V	60	1000	Bandwidth of 3rd formant (Hz)

Parameters (13/16)

Symbol	C/V	Min.	Max.	Name
F4	V	2400	4990	Frequency of 4th formant (Hz)
B4	V	100	1000	Bandwidth of 4th formant (Hz)
F5	V	3000	6000	Frequency of 5th formant (Hz)
B5	V	100	1500	Bandwidth of 5th formant (Hz)
F6	V	4000	6500	Frequency of 6th formant (Hz)
B6	V	100	4000	Bandwidth of 6th formant (Hz)
FNP	V	180	700	Frequency of nasal pole (Hz)
BNP	V	40	1000	Bandwidth of nasal pole (Hz)
FNZ	V	180	800	Frequency of nasal zero (Hz)
BNZ	V	40	1000	Bandwidth of nasal zero (Hz)
AN	V	0	80	Amplitude of nasal formant (dB)

Parameters (14/16)

Symbol	C/V	Min.	Max.	Name
A1	V	0	80	Amplitude of 1st formant (dB)
A2	V	0	80	Amplitude of 2nd formant (dB)
A3	V	0	80	Amplitude of 3rd formant (dB)
A4	V	0	80	Amplitude of 4th formant (dB)
A5	V	0	80	Amplitude of 5th formant (dB)
A6	V	0	80	Amplitude of 6th formant (dB)
AB	V	0	80	Amplitude of bypass path (dB)

Klatt Examples (15/16)

1. Vowel

```
TIME = 000; F1=450; F2=1450; F3=2450; F0=100; AV=72
TIME + 400; AV=0
```

2. **Syllable** ('bah')

```
TIME = 000; F1=400; F2=1000; F3=2000; F0=120; AV=72

TIME + 20; F1=650; F2=1200; F3=2500; AV=72

TIME + 20; F1=750; F2=1150; F3=2500; AV=72

TIME = 400; F1=750; F2=1000; F3=2300; F0=90; AV=72

TIME + 30; AV=0
```

Other parameters have been set to default values

Other Examples (16/16)

- 3. **Multivox**, TU Budapest
- 4. Multipulse Linear Prediction, Bishnu Atal, 1982
- 5. **DECtalk** male voice to make it sound female
- 6. Female voice, Dennis Klatt, 1986

Source: Klatt's 'History of speech synthesis'


Summary (1/2)

- Acoustic Tube Models
 - Simpliest Model: Lossless uniform tube
 - Complete model: Considering losses and nonuniformity of the area function
 - Tube Model: Transfer Function
- Linear Prediction
 - Optimum predictor coefficients assuming stationarity
 - Time-varying methods
 - Levinson-Durbin-Algorithm

Summary (2/2)

- Formant Synthesizer
 - Source/Tract Modelling
 - Klatt Synthesizer
 - Audio Examples

Literature(1/1)

References

- [1] Thomas F. Quatieri. Speech Signal Processing. Prentice Hall PTR, Upper Saddle River, first edition, 2002.
- [2] T. Styger and E. Keller. Fundamentals of Speech Synthesis and Speech Recognition, chapter 6, Formant Synthesis, pages 109–128. Wiley, 1994.
- [3] W. Hess, U. Heute, and P. Vary. *Digitale Sprachsignalverarbeitung*. Teubner, Stuttgart, first edition, 1998.