Intonation Modelling
(Fujisaki and more)

Hannes Pirker
Austrian Research Inst. for Artificial Intelligence (ÖFAI)
hannes@oefai.at
presentation given XI.2004 - Graz
Intonation

Linguistic Functions

• Emphasis
 • (Word) Stress
 • Accentuation

• Grouping together
 • Phrasing

• Sentence Mode
 • declarative vs. interrogative
 • (continuing vs. terminating)
Intonation
Paralinguistic & Nonlinguistic factors

• Speaking style
 • e.g. spontaneous vs. read
 • fairy tail vs. Newsreader
 • social status

• Emotion
 • e.g. aroused vs. bored

• Individual Factors
 • sex
 • age ...
Intonation/Pitch/F0
Application of Intonation Models

• Speech Synthesis
 • How to map linguistic function to intonation contours?
 • Aim for adequacy and naturalness

• Speech Recognition
 • Spot accents, focus structure, sentence mode...
 • Analyse paralinguistic factors
Properties of F0-contours

• Microprosodic variation
 • “dip” in contour at /l/
 • voiced/unvoiced transitions...
Properties of F0-contours: Declination

- Overall downtrend
 - of base- and topline.
 - reset at major phrase boundaries
Models of Intonation: Isacenko & Schaedlich 1964

- Simple switching of f0
 - between 150 : 178.6 Hz
- High correlation in listener’s rating of linguistic function

Die Kinder vertrauen den Eltern • question

Die Kinder vertrauen den Eltern • unfinished
ToBI: Tones and Breaks Indices
Pierrehumbert, Hirschberg, Beckman

- Intonation described as series of \(H(igh) \) and \(L(ow) \) target tones
- Accent Tones
 - \(H^*, L^*, L+H^*, H+L, \ldots \)
- Phrasal Tones
 - \(H, L \)
- Boundary Tones
 - \(H\%, L\% \)
ToBI: Tones and Breaks Indices
Accent Tones

- * denotes alignment with stressed syllable
- No direct quantitative information
 - e.g. H* can denote be a steep and high hill or a gentle slope
ToBI: Tones and Breaks Indices
Boundaries

- Boundary tones H% and L%
- Combined with L- H-

- E.g.
 - L-L% : typical final fall in declarative sentences
 - H-H%: typical rise in questions
F0 - stylisation: getting rid of microprosody, flaws, ...
Quantitative Models of Intonation:
IPO Model (tHart/Collier)

• 1. stylise to “perceptually identic”
• 2. Functionally identic
• 3. Inventory of 11 accent-lending and phrase-marking movements
Melodic Modellisation (Hirst 1991)

- Modelling contour via quadratic splines
- Claimed universal (Language independent)
MOMEL
Melodic Modellisation (Hirst 1991)
Quadratic Splines
MOMEL
Melodic Modellisation (Hirst 1991)

• Freely available
• Valid smoothing method
Tilt (Taylor & Black/ EST)

- Intonation contour as a series of (a)ccent and (b)oundary events
Events modelled by Rise-Fall-Coefficients (RFC)

- Amplitude
 - A_{rise}
 - A_{fall}

- Duration
 - D_{rise}
 - D_{fall}

- „Absolute Position“
 - Some absolute f0 value (peak, start)
 - Some absolute position in timeline
Tilt –value:

Ratio between difference and sum

\[
\begin{align*}
\text{tilt}_{\text{amp}} &= \frac{|A_{\text{rise}}| - |A_{\text{fall}}|}{|A_{\text{rise}}| + |A_{\text{fall}}|} \\
\text{tilt}_{\text{dur}} &= \frac{D_{\text{rise}} - D_{\text{fall}}}{D_{\text{rise}} + D_{\text{fall}}}
\end{align*}
\]

• Tilt values
 • +1 rise component only
 • -1 fall component only
 • 0 rise and fall symmetrical
Tilt – model
Reduction of necessary parameters to 3

- Intonation events encoded via:
 - Dur_{event} (sum of fall and rise)
 - Amplitude_{event} (sum of fall and rise)
 - Tilt_{event}
 - (absolute positioning)
Combined into global Tilt value

- tiltAmp and tiltDur highly correlated
- Combined into:
- \(\text{tilt} = \frac{\text{tiltAmp} + \text{tiltDur}}{2} \)
Tilt –value:
Ratio between difference and sum

\[\text{tilt}_{\text{amp}} = \frac{|A_{\text{rise}}| - |A_{\text{fall}}|}{|A_{\text{rise}}| + |A_{\text{fall}}|} \]

\[\text{tilt}_{\text{dur}} = \frac{D_{\text{rise}} - D_{\text{fall}}}{D_{\text{rise}} + D_{\text{fall}}} \]

\[\text{tilt} = \frac{|A_{\text{rise}}| - |A_{\text{fall}}|}{2(|A_{\text{rise}}| + |A_{\text{fall}}|)} + \frac{D_{\text{rise}} - D_{\text{fall}}}{2(D_{\text{rise}} + D_{\text{fall}})} \]
Tilt

Dur=2sec, Amp=60, F0peak=150

Tilt Contour for tilt=-1 dur=2 s

Tilt=-1

Tilt Contour for tilt=-0.5 dur=2 s

Tilt=-0.5

Tilt Contour for tilt=0 dur=2 s

Tilt=0

Tilt Contour for tilt=0.5 dur=2 s

Tilt=+0.5
Fujisaki-Model
Hiroya Fujisaki 1984

• Superpositional Model: F0 production modelled by 2 separate components
• PHRASE component driven by:
 • Phrase commands: Tp and Ap
• **ACCENT component driven by:**
 • Accent commands: switch on and off at T1, and T2, Aa
Addition in the logarithmic domain

- \(F0 = \text{Baseline} + \text{PhraseComponent} + \text{AccentComponent} \)

\[
\ln F_0(t) = \ln F_b + \sum_{i=1}^{I} A_{pi} C_p(t-T_{bi}) + \sum_{j=1}^{J} A_{ej}[C_a(t-T_{ej})-C_a(t-T_{aj})].
\]

\[
C_p(t) = \begin{cases}
\alpha^2 t \exp(-\alpha t), & \text{for } t \geq 0, \\
0, & \text{for } t < 0.
\end{cases}
\]

\[
C_a(t) = \begin{cases}
\min [1 - (1 + \beta t) \exp(-\beta t), \gamma], & \text{for } t \geq 0, \\
0, & \text{for } t < 0.
\end{cases}
\]
Addition in the logarithmic domain

- $F_0 = \text{Baseline} + \text{PhraseComponent} + \text{AccentComponent}$

$$\ln F_0(t) = \ln F_b + \sum_{i=1}^{I} A_{pi} G_p(t - T_{bi}) + \sum_{j=1}^{J} A_{aj} [C_a(t - T_{1j}) - C_a(t - T_{2j})].$$

$$G_p(t) = \begin{cases} \alpha^2 t \exp(-\alpha t), & \text{for } t \geq 0, \\ 0, & \text{for } t < 0. \end{cases}$$

$$C_a(t) = \begin{cases} \min [1 - (1 + \beta t) \exp(-\beta t), \gamma], & \text{for } t \geq 0, \\ 0, & \text{for } t < 0. \end{cases}$$
Addition in the logarithmic domain

- $F_0 = \text{Baseline} + \text{PhraseComponent} + \text{AccentComponent}$

\[
\ln F_b(t) = \ln F_b + \sum_{i=1}^{I} A_{ps}C_p(t - T_{bi}) + \sum_{j=1}^{J} A_{a_j}[C_a(t - T_{1j}) - C_a(t - T_{2j})].
\]

\[
C_p(t) = \begin{cases}
\alpha^2 t \exp(-\alpha t), & \text{for } t \geq 0, \\
0, & \text{for } t < 0.
\end{cases}
\]

\[
C_a(t) = \begin{cases}
\min[1 - (1 + \beta t) \exp(-\beta t), \gamma], & \text{for } t \geq 0, \\
0, & \text{for } t < 0.
\end{cases}
\]
Addition in the logarithmic domain

\[
\ln F_b(t) = \ln F_b + \sum_{i=1}^{I} A_{p_i} G_p(t-T_{0i}) + \sum_{j=1}^{J} A_{a_j} [G_a(t-T_{1j}) - G_a(t-T_{2j})].
\]

\[
G_p(t) = \begin{cases}
\alpha^2 t \exp(-\alpha t), & \text{for } t \geq 0, \\
0, & \text{for } t < 0.
\end{cases}
\]

\[
G_a(t) = \begin{cases}
\min \left[1 - (1 + \beta t) \exp(-\beta t), \gamma \right], & \text{for } t \geq 0, \\
0, & \text{for } t < 0.
\end{cases}
\]
Phrase Component

\[G_p(t) = \alpha^2 t \exp(-\alpha t) \]
Accent Command:
\[Ga(t) = \min[1 - (1+\beta t) \times \exp(-\beta t), \gamma] \]

Accent Command (Ga) Response with different beta

- Beta=30
- Beta=20
- Beta=15
- Beta=10

\[Aa=1.0 \]
\[\gamma = 0.9 \]
Accent form with different Amplitude

Accent with different Aa (dur = 250ms)
Accent form with different Amplitude

Accent with different Aa (dur = 250ms)

Aa=0.5

Aa=0.25

Time [ms]
Accent form with different Amplitude

Accent with different Aa (dur = 250ms)

Aa=0.75
Aa=0.5
Aa=0.25

Time [ms]

© ÖFAI, Wien
Accent form with different Amplitude A_a

Accent with different A_a (dur = 250ms)

$A_a=1.0$

$A_a=0.75$

$A_a=0.5$

$A_a=0.25$
Accent form with different Duration

Accent with different Duration

Aa=1.0
Gamma=0.9

Aa=1 beta=20, dur=(0.1, 0.15, 0.2, 0.25)

Time [ms]
How to extract Phrase- and Accent-Commands

1. Smoothing
2. Highpassfilt (0.5 Hz): HFC
3. Subtract: LFC
 - Minima -> Tp
 - Maxima -> ~ Ap
4. HFC
 - Minima -> Ta1
 - Maxima -> Ta2
5. Hillclimb search
Example
FujiParamEditor
Application Example: Using Fujisaki-Model in DRESS

• Fuji params predicted together with Duration and Intensity
Summary

- Overview on some quantitative models of intonation
 - IPO
 - MOMEL
 - Tilt
 - Fujisaki

- http://www.oefai.at/~hannes
Resources, Literature etc.

- Homepage of Hansjoerg Mixdorff where you find lots of references to his work on using Fujisaki’s model for German and other languages and can download the FujisakiEditor http://www.tfh-berlin.de/~mixdorff/Research.htm

- Praat: The indispensible tool for speech analysis
 http://www.fon.hum.uva.nl/praat/

- A praat implementation for MOMEL
 http://www.icp.inpg.fr/~loeven/Praat/momel_english.html

- The Edinburgh Speech Tools (EST) which contain the Tilt-model.
 http://festvox.org/docs/speech_tools-1.2.0/