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Abstract—This report is a complement to an oral pre-
sentation on the topic of estimation theory held at the
Advanced Signal Processing Seminar. First part of the
presentation reviewed fundamental theory of signal es-
timation, definition of minimum variance unbiased es-
timator and the Cramer-Rao Lower Bound. This part
deals with three classes of estimator structures. Linear
estimators, ML (maximum likelihood) estimators and
LS (least squares) estimators. For these three classes
firstly theoretical background will be presented along with
some fundamental properties. This will include the dis-
cription of ways to incorporate prior knowledge about
the problem, optimality and performance criteria and
calculation of estimated parameter values. Problems
arising from the use of specific estimators will be ad-
dressed as well. Finally examples should help under-
stand the theory. The main reference for this work is
[1]. All theoretical derivation, if not otherwise stated,
refer to this work.
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1 Introduction

Problem of parameter estimation is determining an unknown value which
in some way drives a process being observed. In a general case we will
not be able to observe true values of the signal. Modeling of system and
measurement imperfections will lead to the assumption that we have noise
embedded in the signal. Two ways to incorporate a priori knowledge exist.
On a statistical side we might assume that the observation is generated
according to a known pdf with unknown parameters. In a case of a normal
distribution this value might be the mean, the variance or both. This concept
applies to arbitrary distributions. We will denote a class of known pdfs with
unknown parameter θ as p(x; θ). If we have no statistical assumptions of
the signal, we might turn to a deterministic characterization in terms of a
known data model. Again one or more parameters driving the model are
to be estimated. The signal observed has a functional dependence s(θ).
Generally a quantity to be estimated will be a parameter vector θ. This
of course includes the case, where only one-dimensional value θ is to be
estimated.

Generally we will try to formulate an optimality and performance crite-
rion for all estimator classes. However this will not always be possible. De-
finition of estimation optimality is closely related to the concept of CRLB.
If the estimator is shown to attain the bound we define it to be optimal.
Related but somewhat weaker is the performance criterion. It will include a
definition of a variance of parameter vector that an estimator is producing.
Optimally this will under some conditions converge towards the CRLB.

Mostly the noise process w will be assumed to be a zero-mean white
noise. In some cases this will be a necessary part of our derivation. Some-
times however it is possible to generalise the concept and define a noise
covariance structure Cw. For some estimator classes this will allow model-
ing of arbitrary noise processes.
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2 Linear Estimators

The class of linear estimators is based on the assumption that we known a
data model that is linear in a vector parameter θ. Starting point is a simple
example where we observe two noised data points at sample instants 0 and
1. If we assume a first order polynomial, a straight line, to be our signal
model, the parameters to be estimated include the intercept a and slope b
(eq.1 and 2).

x0 = a + 0b + w0 (1)

x1 = a + 1b + w1 (2)

We can formulate this in a matrix notation as
(

x0

x1

)
=

(
1 0
1 1

)(
a
b

)
+

(
w0

w1

)
(3)

or more generally

x = Hθ + w (4)

Eq. 4 is the most general case of a linear signal model. If prior knowledge
exists that allows use of eq.4 then linear estimators can be employed to
estimate the value of θ. In eq.4 x is the vector of observed values. H is
called observation matrix. It is known and needs to be constructed from the
input values of the system. θ is the parameter vector, values θi need to be
estimated. In the above example this would be θ = [a b]T . w is a vector of
realisations of a noise process.

The theory behind the CRLB states that a MVU estimator can be found
if and only if we can find a p-dimensional function g(x) that satisfies

∂ln p(x; θ)
∂θ

= I(θ)(g(x) − θ) (5)

The estimator is then given as θ̂ = g(x) and the variance of the estima-
tion is the inverse of the Fisher Information matrix I(θ).

Assuming the signal model from eq.4 with a given noise covariance struc-
ture w ∼ N (0,C) it can be shown [1] that

∂ln p(x; θ)
∂θ

= HTC−1H
[
(HTC−1H)−1HTC−1x− θ

]
(6)

The estimator for a linear model with arbitrary but known noise is then
given as

θ̂ = (HTC−1H)−1HTC−1x (7)

with covariance matrix of θ̂ being
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Cθ̂ = (HT C−1H)−1 (8)

If w is white gaussian noise with w ∼ N (0, σI) eq.7 and 8 simplify to

θ̂ = (HTH)−1HTx (9)

Cθ̂ = σ2(HTH)−1 (10)

Given that eq.5 is fulfilled important implication for this class of estima-
tors is that they yield unbiased parameter estimates and attain the CRLB.
Assuming a linear model of the data leads to an optimal estimator.

It is important to note what kind of applications can be covered using
linear estimators. Linear data model states that the unknown parameter has
to be in linear dependence within our data model. This definition covers far
more than fitting a straight line. Approximation of polynomials of arbitrary
order or estimating the weights of the tapped delay line both can be covered
using linear estimation.

Problems arising in this context primarily deal with the definition of the
observation matrix. Since HTH has to be invertable in order to calculate
parameter estimates H has to be a full rank matrix. This is closely related
to the choice of input signal and the construction of H.

2.1 Example - Curve Fitting

Noised realisations of a second order polynomial process are observed. The
goal is to estimate polynomial coefficients θ. The linear signal model is
defined as

x(tn) = θ0 + θ1tn + θ2t
2
n + w(tn) (11)

with x = [x(t0)x(t1) · · · x(t99)]T being the observed values and the pa-
rameter vector θ = [θ0θ1θ2]T . Noise variance is known to be σ = 10. Ob-
servation matrix H is constructed as described in eq.12. Fig. 1 shows one
realization of the process and the fitted signal model.

H =

⎡
⎢⎢⎢⎣

1 t0 t20
1 t1 t21
...

...
...

1 t99 t299

⎤
⎥⎥⎥⎦ (12)

After observing 5000 realisations of the noise corrupted signal, the poly-
nomial coefficients are estimated according to eq.9, averaged over all realisa-
tions resulting in θ̂ = [1.1939 15.107 −2.8003]T . True value of the parameter
vector is θ = [1.2 15.1 − 2.8]T .
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Figure 1: Second order polynomial estimation

3 Maximum Likelihood Estimators

The approach for ML estimator differs from linear modeling, since we make
no deterministic assumptions of a signal model. The observed values are
considered to be realisatiuons of a random process with a known probability
density function (pdf). Although the analytical form of the pdf is known,
its parameters are not and need to be estimated. The major principle of
ML estimation is that pdf parameters are calculated which define a random
process which will most likely produce the observed data. The calcula-
tion of the parameters will require finding the maximum of the likelihood
function.[2] defines the likelihood function as

The joint pdf of m sample random variables evaluated at sample
points x1, ..., xm is

l(θ, x1, ..., xm) = l(θ,x) = fx(x | θ) =
m∏

i=1

fx(xi | θ) (13)

ML estimation yields a parameter θ for which l(θ,x) has a global maxi-
mum.

θ̂ = arg max
θ

l(θ,x) (14)

The concepts of the probability p(x, θ) and likelihood l(θ,x) are related
in terms of that the maximization procedure for p is proportional to max-
imizing l. The difference lies in the way the prior knowledge is expressed.
Knowing a pdf with known parameters will enable prediction of an outcome
of a random process. The concept of a likelihood aims at estimating the
parameters when data is already observed.

5



In many application it will be more convenient to maximize the logarithm
of the likelihood function (eq.15). The first example in this section will show
some useful properties of Λ.

Λ(θ,x) = ln(l(θ,x)) (15)

Generally there is no optimality criterion in terms of variance of estimates
attaining the CRLB. However in many cases a ML procedure will actually
yield a MVU estimator if it exists. The ML estimation improves with larger
data sets. If the observation interval is infinitely long N → ∞, ML will yield
an unbiased (eq.16) and efficient (eq.17) estimator. In practice the length
of N for which ML estimator becomes asymptotically efficient will not be
known and might be determined using computer simulations [1].

lim
N→∞

E(θ̂) = θ (16)

lim
N→∞

var(θ̂) = CRLB (17)

A unique advantage of ML estimators is that a numerical value of θ can
always be found. This is due to fact that a maximum of a known function Λ
is determined within a bounded parameter space. Numerically this value can
be found using grid search techniques. This property also makes ML more
flexible. Discrete parameter problems can be handled as well as estimation
of a parameters from a continuous range of possibilities. Two examples show
this.

3.1 Example - Binomial Distribution

The binomial distribution in eq.18 gives the discrete probability distribution
of obtaining exactly h successes out of N trials. Two discrete outcomes
H1 and H2 of a random process exist. The question is how to calculate
probabilities of H1 and H2 from a set of N observations.

p(h | N) =
N !

h!(N − h)!
ph(1 − p)N−h (18)

Out of N = 1000 trials H1 occurs h = 658 times. In order to find
probabilities of H1 and H2 we need to find a value of p for which eq.18 has
its maximum. Assuming p = 0.5 eq.19 needs to be calculated.

1000!
658!342!

0.5658(1 − 0.5)342 (19)

At this point it is clear why we would prefer to calculate the logarithm
of the likelihood function instead of the values of the distribution itself.
Whereas eq.19 contains both very large and very small numerical values,
the introduction of eq.15 mitigates the numerical problems by calculating
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ln(0.56580.5342) ≈ −693.15 (20)

Evaluating the log-likelihood function for different values of p we find
the maximum at p1 = 0.66 as shown in fig.2.
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Figure 2: ML estimation of a binomial distribution

3.2 Example - Normal Distribution

In the previous example a ML estimation was performed on binary data.
More general case includes estimating parameters for from a continuous set
of possibilities. In this example a procedure for estimating mean µ and
standard deviation σ of a normal distribution will be introduced. Although
the results from eq.24 and eq.25 are well known this example should show
how these results are obtained.

We assume a number of realisations of a random gaussian process. Ac-
cording to eq.15 the likelihood function is given as

L(θ;x) = L(µ, σ;x1, ..., xn) =
∏

i

1
σ
√

2π
exp

(−(xi − µ)2

2σ2

)
(21)

or equivalently

L(θ;x) =
(2π)−n/2

σn
exp

(
−

∑
i(xi − µ)2

2σ2

)
(22)

Taking the natural logarithm of eq.22 yields

Λ(µ, σ;x) = ln(L(µ, σ;x)) =
−1
2

n ln(2π) − n ln(σ) −
∑

i(xi − µ)2

2σ2
(23)

In order to find the maximum of the function eq.23 is partial derivatives
with regard to µ and σ are calculated and set to zero. This yields the
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final results of the analysis, the mean and standard deviation of a normal
distribution.

∂Λ(µ, σ;x)
∂µ

=
∑

i(xi − µ)
σ2

= 0 → µ̂ =
∑

i xi

n
(24)

∂Λ(µ, σ;x)
∂σ

=
−n

σ
+

∑
i(xi − µ)2

σ3
= 0 → σ̂ =

√∑
i(xi − µ̂)2

n
(25)

4 Least Squares Estimators

In this section an overview over different LS approaches will be provided.
A variety of estimation algorithms based on the minimization of the least
square error are available. They all share some basic properties. Here again,
no statistical knowledge of the data is required however a valid signal model
s as a function of a parameter vector θ is essential. The advantage is a
broader range of applications that can be cover using LS estimation. Lack
of statistical characterization in most general case of both signal and noise
leads to a lack of any optimality criterion in terms of CRLB. However an
error function will be defined. Its minimization will be a quality criterion
for LS estimation. If it is desirable to have any statistical measure for
estimator performance, statistical descriptions of signal, noise or both will
be necessary.

The goal of an LS estimator is to minimize an error function, which is
the sum of squared errors (eq.26). After observing x optimal parameters θ
driving the signal model are calculated which minimize J(θ).

J(θ) =
N−1∑
n=0

(x[n] − s[n])2 = (x − s(θ))T (x − s(θ)) (26)

Although in general case LS algorithms require no statistical description
of the noise process, in most applications it will be reasonable to ensure
the noise process has a zero mean, otherwise LS estimators tend to produce
biased estimates.

Many classes of LS estimators exist. Depending on the functional re-
lationship of the signal model s and its parameters θ following classes are
distinguished.

• Linear estimators

• Nonlinear estimators

• Separable estimators
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Linear modeling implies liner dependence of θ in s. The function itself
doesn’t necessary has to be linear, but only the parameter to be estimated.
An example for such a function is estimation of the amplitude of sinusoidal
carrier as given in eq.27.

J(A) =
N−1∑
n=0

(x[n] − A cos(2πf0n))2 (27)

A nonlinear LS problem emerges if we estimate a parameter which is
nonlinear in the signal model. In the same situation as above, estimating
the carrier frequency instead of the amplitude yields a nonlinear LS problem
(eq.33).

J(f0) =
N−1∑
n=0

(x[n] − A cos(2πf0n))2 (28)

If the parameter vector estimated using LS contains both linear and
nonlinear parameters separable LS problem emerges. This situation is given
in eq.29.

J(A, f0) =
N−1∑
n=0

(x[n] − A cos(2πf0n))2 (29)

Depending on the application several possible linear estimation approaches
exist. These are summarized as follows:

• Linear estimation (batch approach)

• Weighted linear estimation

• Order-recursive estimation

• Sequntial estimation

As in the section on linear estimators, the signal model assumed is x =
Hθ. However no statistical characterization of the noise process is given.
The estimator is then calculated as

θ̂ = (HTH)−1HTx (30)

Note that opposite to the theory of linear estimators in section 1 no per-
formance criterion is given here. A useful generalization of eq.30 is introduc-
tion of a weighting matrix W. Some prior knowledge about the observed
samples could be applied using W. If for example some data values are
known to be more reliable than the others these could be emphasized using
W. The estimator is then given in eq.31.
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θ̂ = (HTWH)−1HTWx (31)

Order recursive LS estimation is applied if the order of the data model
is unknown. Increasing order will yield a a better performance in terms of
minimizing Jmin at the cost of higher computational complexity. This trade-
off needs to be addressed depending on the application, available resources
and required accuracy.

Sequential LS estimation is an iterative approach which allows the in-
coming data to be processed sequentially as they come in. Unlike te batched
LS approach as described in eq.30 where estimation is calculated when the
whole observation interval is available, here after obtaining an initial esti-
mates the value of θ̂is updated according to eq.32.

θ̂[n] = θ̂[n − 1] + K[n](x[n] − hT θ̂[n − 1]) (32)

After every iteration the gain vector K[n] needs to be updated. This op-
eration requires no matrix inversion. Sometimes the choice of initial values
might be a problem. This is usually done by observing the process and cal-
culating the initial estimates using batch approach, or making a reasonable
guess on the values.

Nonlinear LS regression is given in its most general form in eq.33. s(θ)
is an arbitrary nonlinear function in θ. Solving eq.34 requires a solution of
N simultaneous nonlinear equations. This is addressed as the problem of
nonlinear regression.

J(θ) =
N−1∑
n=0

(x − s(θ))2 = (x − s(θ))T (x− s(θ)) (33)

∂J

∂θ
=

∂s(θ)T

∂θ
(x − s(θ)) = 0 (34)

Two different approaches to deal with this problem exist. One is the
Newton-Raphson method. Here a solution is found by linearizing the deriv-
ative of J(θ) and iterating until the solution is converging. The other pos-
sible approach is the Gauss-Newton method which uses a linearized signal
model in order to find the solution [1].
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