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Abstract

Estimation theory is an important mathematical concept used in many com-
munication and signal processing applications. This theory is helpful in esti-
mation of the desired information in the received data and hence is used all
range of application from radar to speech processing. In this report we will
introduce some of basic definitions and concepts of estimation theory.



1 Introduction

This article introduces some fundamentals of estimation theory. Emphasis
here is to introduce some of the basic concepts and definitions without going
into mathematical rigor. This problem of parameters estimation is common
in many fields where we have to extract parameters form given data. Some
common fields in which estimation theory is used are listed below [2]:

• In radar, the delay of the received pulse echo has to be estimated in
the presence of noise

• In sonar, the delay of the received signal from each sensor has to esti-
mated in the presence of noise

• In Speech, the parameters of the speech model have to be estimated in
the presence of speech/speaker variability and environmental noise

• In image processing, the position and orientation of an object from
a camera image has to be estimated in the presence of lighting and
background noise

• In biomedicine, the heart rate of a fetus has to be estimated in the
presence of sensor and environmental noise Communications where the
carrier frequency of a signal has to be estimated for demodulation to
the baseband in the presence of degradation noise Control where the
position of a powerboat for corrective navigation correction has to be
estimated in the presence of sensor and environmental noise

• In seismology, the underground distance of an oil deposit has to be
estimated from noisy sound re sections due to di erent densities of oil
and rock layers The majority of applications require estimation of an
unknown parameter from a collection of observation data x[n] which
also includes due to sensor inaccuracies, additive noise, signal distor-
tion (convolutional noise), model imperfections, unaccounted source
variability and multiple interfering signals.

All of the above problems share a common thing of estimation of a certain
unknown parameter or a group of parameters. Estimation of the parameter
can be defined as:

An estimator can be think of as a rule or function that assigns a value to
θ for each realization of x. The estimate of θ is the value of θ obtained for
a given realization x. Because data is inherently random, therefore, we have
to used statistical methods to get these estimates, because in general we do
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Figure 1: Estimation as a Rule or Function

not know the actual data. We model data by defining probability density
function (PDF) as:

p(x; θ) =
1√

2πσ2
exp[− 1

2σ2
(x− θ)2] (1)

In (1), it is important note that the Semicolon denotes the family of PDFs
depending on parameter θ. i.e. we will get different PDFs for different values
of theta as shown in the figure below.

In General, even the PDf is not known a priori, its selection should be:

• Consistent with problem constraints.

• according to any prior knowledge about the data.

• Computationally feasible to get an estimate.

Due to random nature of data and even estimate, we can only judge the
performance of estimator by its statistical properties. Rest of the report is
organized as: in section 2, we will introduce a very commonly used estimator
known as minimum variance unbiased estimator. In the last section we will
discuss cramer rao bound.

2 Minimum Variance Unbiased Estimator

Unbiased estimators are an important class of commonly used estimators.
These estimators can be found by applying certain criteria which we will
discuss in this section.
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2.1 Biased and Unbiased Estimators

Biased estimator is the estimator which on average do not converge to the
true estimate. This type of estimator is used where we Do not not have
sufficient amount of data to get reasonably good estimate. Bias is the ex-
pected value of deviation of estimated value of parameter from the true value.
Mathematically,

b(θ) = E(θ̂ − θ) (2)

An example of biased estimator is a modified sample mean defined as:

Ǎ =
1

2N

N−1∑
n=0

x[n] (3)

which on average gives:

E(Ǎ) =
1

2
A (4)

An unbiased estimator is the Estimator which on average yields the true
value of parameters. Mathematically,

E(θ̂) = θ (5)

A sample mean estimator is an unbiased estimator define as:

Â =
1

N

N−1∑
n=0

x[n] (6)

which yield on average

E(Â) = A (7)
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Figure 3: MVU does not exist

Unbiased estimator does not necessarily mean a good estimator but on
average it will converge to true value. Some times biased estimators can also
perform well, specially when do not have large data to estimate.

2.2 Minimum Variance Unbiased Estimator (MVUE)

Mean Square Error (MSE) estimator is the natural choice as an optimality
criterion for the search of an Unbiased estimator, therefore, we define MSE
as:

mse(θ̂) = E[(θ̂ − θ)2] (8)

but, unfortunately it leads to biased estimator such that:

mse(θ̂) = var(θ̂) + b2(θ) (9)

To obtain minimum variance unbiased estimator, we constrain bias term
to zero and minimize the variance.

2.3 Existence of the Minimum Variance Unbiased Es-
timator

Fig. 2 and 3 show a situation were MVUE exits or not respectively. It is
important to note that, MVUE exists only if its variance is minimum for all
values of the parameter as shown in Fig. 2. In Fig. 3 estimator 2 has lower
variance for the small values of parameter but estimator 3 has lower variance
for the large values of parameter, therefore, none of the estimator is MVUE.
This condition can be put in the following way also.

MVUE exits only if class of PDF does not change with Parameters.
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2.4 Finding the Minimum Variance Unbiased Estima-
tor

Even if MVUE exits for a given problem, it is difficult to find it. We can
follow one of the following paths to find MVUE.

• Determine the Cramer-Rao Lower Bound (CRLB) and see if some of
the estimator satisfies it.

• Apply Rao Blackwell Lehmann Scheffe (RBLS) theorem if no MUVE
satisfies CRLB.

• By applying linear constraint we can further restrict the class of esti-
mators.

First two approaches may produce the MVUE, while third approach will
yield it only if the MUV estimator is linear in data.

3 Cramer Rao Lower Bound

It was stated earliar that, Cramer Rao lower bound is used to determine the
MVUE. If we are able to find CRLB for some estimator then it is not only
MVUE but also efficient. On the other hand, there exist some MVUE which
do not satisfy CRLB, therefore, they are inefficient estimators. We depict
have these situations in Fig. 4 and 5.

3.1 Some Definitions

Likelihood Function: When PDF is viewed as function of unknown pa-
rameter with fixed data then it is known as likelihood function. Logarithm
of this function is known as loglikelihood function. Mathematically:

p(x[0]; A) =
1√

2πσ2
exp[− 1

2σ2
(x[0]− A)2] (10)

Sharpness of likelihood function is used to determine how accurately we
can find the unknown parameter. to quantify this notion, second derivative
of the logarithm of the likelihood function is used.

Fisher Information: Second derivative of Loglikelihood Function is
used to determine the sharpness. Expected value of the second derivative of
Loglikelihood Function is known as Fisher Information.
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Figure 5: An inefficient MVUE

I(θ) = −E[
∂2 ln p(x[0]; θ)

∂θ2
] (11)

Fisher Information has following properties:

• Always nonnegative.

• Additive for independent observations.

• For completely dependent data Fisher Information does not change.

3.2 Cramer Rao Lower Bound (CRLB)

If a process has regular PDF then variance of any unbiased estimator must
satisfy CRLB, mathematically:

var(θ̂) ≥ 1

−E[∂2 ln p(x[0];θ)
∂θ2 ]

(12)

CRLB is attained when variance is equal to the reciprocal of Fisher In-
formation.
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Asymptotic CRLB: For the cases where it is difficult to evaluate the
CRLB, then asymptotic CRLB is calculated by using asymptotic Fisher In-
formation which is defined as:

[I(θ)]ij =
N

2

∫ 1
2

− 1
2

∂Pxx(f ; θ)

∂θi

∂Pxx(f ; θ)

∂θj

df (13)

where Pxx(f ; θ) is the PSD of the process with explicit dependence on θ.
It is also assumed that process x[n] is zero mean.

3.3 An Application of CRLB

Here we apply CRLB to estimate the parameters of autoregressive (AR)
process. It is a commonly used model for speech processing in which data is
modelled by a causal all pole filter excited by white gaussian noise. In this
model the excitation noise is inherent in the model to make the process wide
sense stationary. This model is also known as linear predictive coding model
[1]. Here we want to apply the above concepts to get model parameters from
the received data. For this purpose, we first define an AR process as:

A(z) = 1 +

p∑
m=1

a[m]z−m (14)

and estimated power spectral density is given as:

P̂xx(f) =
σ̂2

u

|1 +
∑p

m=1 â[m]exp(−j2)|2 (15)

The PSD implied by the AR model is

Pxx(f ; θ) =
σ2

u

|A(f)|2 (16)

and estimated Fisher Information matrix elements are:

[I(θ)]kl =
N

2

1
2∑
−1
2

1

σ4
u

df =
N

2σ4
u

(17)

and Fisher Information Matrix is:

I(θ) =

[
N
σ2

u
Rxx 0

0T N
2σ4

u

]
(18)
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where [Rxx]ij = rxx[i − j] is a p × p toeplitz autocorrelation matrix and
0 is a p × 1 vectors of zeros. Upon inverting the Fisher Information matrix
we have

var(â[k]) ≥ σ2
u

N
[R−1

xx ]kkk = 1, 2, ..., p (19)

var(σ̂2
u) ≥

2σ4
u

N
(20)
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