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Abstract— This paper introduces various methods for the opti- function (PDF) for each assumed hypothesis is completely
mum detection of deterministic and random signals in Gaussian known. This leads us to ttemplehypothesis testing problem
noise. The derivation of the detectors is based on the Neyman-,,1yi~h ;

; ; i . which is formulated as
Pearson theorem. We will only deal with Gaussian noise and
assume that the probability density function is completely known.

Ho : x[n] = wn] n=0,1,...,N—1

Index Terms— Neyman-Pearson theorem, replica-correlator, Hy : z[n] = s[n] + w(n] n=0,1,...,N—1
matched filter, generalized matched filter, energy detector,
estimator-correlator

@

where s[n] is the signal to be detected andn] is a noise
process. Therefore, we have to determineoptimal method
|. INTRODUCTION so that for each observation data we decide whether hypsthes
Ho or H; was true. There are several mathematical approaches
ETECTION theory deals primarily with techniques foito solve such a problem depending on what we mean by
determing how good data obtained from a certain modeptimal. Though, the primary approaches to simple hypdahes
corresponds to the given data set. A typical example is a radesting are the classical ones, namely tlieyman-Pearson
system where the presence and absence of a target has tONB® and theBayesianapproach. The choice of the method
determined from the measurements of a sensor array. Or idepends on how much prior knowledge about the probabilities
binary communication system where the received signal hafsoccurence of the two hypotheses we want to incorporate in
to be processed to decide whether a binary "0” or "1"” wasur decision process. Therefore, the problem itself detersn
sent. This can certainly be extended to the case of detectthg choice of the appropriate approach. While communication
M signals. However, signal processing algorithms perfogmirand pattern recognition systems use the Bayes risk, we will
the detection process have to tackle the problem that temploy the NP criterion as it is the case for radar and sonar
information-bearing signals are corrupted by noise. systems. Moreover, the derivation of the optimal detectolis
In this paper we will only deal with the detection of a singlelepend on our assumption about the noise.
signal in noise. The perhaps simplest case is when the signal
is assumed to beleterministic(as it is for a radar system).
In other cases, the signal is more appropriately modeled as I1l. DETERMINISTIC SIGNALS
a random process. For example the waveform of a speech .
signal depends strongly on the identity of the speaker, tﬁ‘e Replica-Correlator
context in which the sound.|s spoken etc. It is therefore ng\% begin our discussions about optimal detection by consid-
meaningful to assume the signal to be_: known but rather to ﬁng the case where the signdh] in our hypothesis testing
a random process with known covariance structure. In b:g

h find a d hich oerf oblem (1) is deterministicw[n] is thereby assumed to be
cases, Nowever, we want to find a detector which performs, ¢, mean Gaussian noise process with variarfcend
optimal in some sense.

autocorrelation function

Il. PROBLEM STATEMENT ruwlk] = E {wln]wln + K} = 025[k]
The main idea behind the detection process is based on

statistical hypotheses testinGiven an observation vector We will refer to this as white Gaussian noise (WGN) and
and several hypothesés; (a listning of probabilistic models denote

which may have generated the data), our aim is to find

an optimal method to determine which model fits the data w ~ N(0,02T)

best. Although the number of hypotheses can in principle be '

arbitrary, we will only consider the case of two hypothesgs

. . T . .
andH,. We will further assume that the probability density’Nerew = [w[0] w[l] ... w[N —1]|" is a noise vector. As
already mentioned, we will use the NP criterion to derive an
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likelihood ratio exceeds a threshold or

T(x
_ p(X; Hl) z[n] —— Z ( )=
L(x) ===+ > 7~ o
p(X, HO) n=0 <4 — H,

wherex = [2[0] z[1] ... z[N —1]]" is our received data
vector. Since the PDF under either hypothesis is Gauss@n, i

s[n]

Fig. 1. Replica-correlator

1
p(x;Ha) = (2m02)% P [_%2 (=) (x - S)] occurs when the vectors are proportional to each other. More
1 1 (2 precisely, the dot product measures the similiarity betwtbe
p(x;Ho) = ——— exp [22 XTX} two vectors yielding the highest value when they are pdralle
(2m0?)2 g and the lowest value (i.e. zero) when they are orthogonal to
we have each other. Thus, such a detector removes those components
from the received data which are orthogonal to the signal.
Since the noise is assumed to be independent of the sigeal, th
1 detector simply eliminates it whereas the components learal
L(x) = exp {202 [(x—8)"(x—s) - XTX]} > v to the signal are retained.
Taking the logarithm of both sides yields
B. Example
1 To illustrate the result above, we assume thlat] = A for
I(x)=In L(x) = —5 5 [(x—8)"(x—s) =x"x] > Inv  gome known leveld, whereA > 0. Then from (3)
This does not change the inequality because the logarithm N-1
is a monotonically increasing transformation and both side T(x)=A Z z[n)
will be affected equally. After performing some algebraic n=0

manipulations, we get
If we further divideT'(x) by N A, we decideH; if
%XTS—#STS>IH7 L N
T (x) = — Z zn] =7 > 4"
The second term in this inequality represents the energy of N n=0
the signal. But since the signaln] is known, we can simply
move this expression to the right side. So But this is just the sample mean detector. Note that i 0,

we get the same detector but we decide if = < "

1
xT's > o2 ln'y+§ s''s
C. Matched Filter

Hence, we get a new threshold and we decidé; if . . . L .
g old ! There is another important signal processing interpiatatif

(3). The correlation can be viewed in terms of a filtering

- Nl . process of the data. Since we have a summation of a finite
T(x)=x"s= Z z[n]s[n] > v ) number of samples, we takeRR filter into considerations.
n=0 If we now letx[n] be the input to such a filter, then the output

_ y[n] at timen is given by the convolution operation, i.e.
The NP detector of (3) is referred to as carrelator or

replica-correlatorsince this expression represents a correlation n

process of the received datdn] with a replica of the known yln] = Z hin — k]z[k] (4)
signal s[n]. As expected, it consists of a test statisfi¢x) =0

(a function of the data) and a threshojl which is chosen

to satisfy Pr4 = « for a givena. A block diagram of the where the impulse respongén] of the FIR filter is nonzero
detector is given in Fig. 1. forn=0,1,..., N —1. Note that forn < 0 the output is zero

A physically relevant interpretation of (3) comes from thasince we assume[n] is also nonzero only over the interval
theory of linear vector spaces. The quantitys is termed [0, N — 1]. The question that further arises is how we have to
as thedot productbetweenx ands or the projection of x chooseh[n] in (4) to get the test statistic in (3). The proper
ontos. According to the Schwarz inequality, the largest valuehoice of the impulse response is the "flipped around” versio
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FIR filter Sampling the output at = N — 1 produces
>y = H
o] —=| i 19 Lo
n=N-1 y[N —1] = — S* () X (e?Y)dw
2
<y = Ho T™J -7

This equation relates the output value of the matched filter
to the spectrum of the input signal. Note that when the noise
is absent orX (e/¥) = S(e’*), the output becomes simply
the signal energy. This result can also be seen from (3) when
Another property can be derived when we consider the signal-
to-noise ratio (SNR) at the output of an FIR filter with araitr

hln] = s[N — 1 —n] n=01,....N—1 (5) impulse response given by

[ sIN-1-n] n=0,1,...,N—-1
hin] _{ 0 otherwise

Fig. 2: Matched filter

of the signal or

Inserting (5) into (4) and sampling the output of the FIR filte B2 {y[N — 1];H; }
at timen = N — 1 yields n= Var {y[N —1]; H1}

N-1 2
N-1 hIN —1-— k]s[k‘])
yIN =1 =) slk]afk] := T(x) _ (kz_o
k=0 N-1 2
E { (Z AN —1— k}w[k])
which with a change of the summation variable is identical to k=0
the replica-correlator of (3). This implementation is shoiw (hTS>2 1 (hTS)2
Fig. 2 and known as matched filterbecause the observations = (i 2\ o2 n'h
are passed through a filter whose impulse-respona&ches E {(hTW) }
that of the signal being sought. The output of the matched
filter is sampled exactly at the moment when all observatioggeres — [s[0] s[1] ... s[N —1]]T, h = [h[N — 1]
fall within the filter’'s memory. AN —2] ... h0]]T andw = [w[0] w[1] ... w[N —1]]7. By

the Cauchy-Schwarz inequality, this equation is maxinfal if

D. Properties of a Matched Filter
h=cs

The matched filter may also be viewed in the frequency
domain. Taking the discrete-time Fourier transform (DTFTwhich corresponds to our matched filter. Letting= 1 we

of (5) yields obtain the maximum output SNR given by
H(e7) = §*(e?*)e 3 (N-1) (6) _sTs
Nmax = ? - ?

When we take the absolute value of this equation, the expo-

nential term vanishes and it becomes apparent that the mhtcwhereg. is the signal energy. For the detection .Of a known
filter emphasizes the bands where there is more signal OWSel nal in WGN, the NP criterion and the maximum SNR
P g P criterion lead to the matched filter. Since the NP criterisn i

This can also be shown by considering the convolution Sumtimal, the maximum SNR criterion also produces an optimal

. . . . Q
of (4). We may View this equathn as an inverse DTFT of thg’otector under these model assumptions. On the other hand,
product of the input spectrum with the frequency response 0

the filter. Together with (), we get when we assume that we have non-Gaussian noise the matched
- 109 ' 9 filter is not optimal in the NP sense because the NP detector
is not linear. However, the matched filter still maximizes th

1/ o SNR at the output of a linear FIR filter (more generally, this
y[n] = 27/ Y (e*)e!“ " dw is true for any linear filter, even for an IIR type).
™ —T
1 (" . .
= — H(e7*) X (79)e? " dw
200 Jx E. Performance of a Matched Filter

1 i . ) )
- S* (eI X (d9)edw(n=(N=1)) 4 ) ) _
2m /_,r ()X (e )e “ To determine the detection performance of a matched filter,

we consider again the derived test statistic of (3)
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PDFs of matched filter test statistic

and for the probability of detection

P(THy) p(TH,)
/
Pp = P(H1;H1) = Pr {x[O] > 7;7‘(1}
=Q (W) 9)
g

where o and i are the mean values under each hypothesis
ando is the standard deviation. Using (8) and (9) in (7), we

get
Pra = Pr {T > ’y/;Ho}
,_y/
(=)
o2e
0 € T
Fig. 3: PDFs of a matched filter test statistic Pp = Pr{T >+';H.}
_ol(2= 5)
@ ( 02e
N—-1
T(x) = Z z[n)s[n] = xT's > o From that we can show that the detection probability is given
n=0 by

We know from Chap. Il that under either hypothesig] is
Gaussian. Sincd’(x) is a linear combination of Gaussian _ -1 €

random variablesT'(x) is also Gaussian. If we compute Pp =@ (Q (Pra) = \ 02) (10)
the expected value and the variance of the test statiséc (i.
E{T;H;} andVar {T;H;} for i = 1,2), we get

Since the probability of false alarm is fixed, the key paranet
in (10) is the ENR. As its value increases, the argument of
T N(0,0%) under Hy 7 Q(.) decreases ané’p increases. This relation is shown in
N(e,0%) under H, Fig. 4. It is obvious that to improve the detection perforecean
we can always increasBr4 and / ore/o?. It is important
This is the so callechean-shifted Gauss-Gauss probleimere to note that due to the ENR the detection performance stays
we decide between two hypotheses that differ by a shift in th@affected when the shape of the signal varies. This means

mean ofT". More precisely, the corresponding PDFs have ttBat two signals with arbitrary shape but same signal energy
same Shape (Same Variance) but are disp|ace@ bgainst will lead to the same detection performance. We will latex se
each other (as illustrated in Fig. 3). that this is just the case for white Gaussian noise.

To state something about the detection performance, wedivi

72
(7) by Vo2e F. Generalized Matched Filter
, N(0,1) under H In many cases, the assumption of white noise is not sufficient
T~ N(\/2/o2,1) under H; The noise is rather modeled asrrelated noise described by

a covariance matrixC. Thus, we now assume that

We see that the detection performance must increase with
\/e/c2. This is obvious because increasing the energy-to- w ~ N(0,C)
noise ratio (ENR)s/0? does not change the shape of the ’

PDF but simply moves them further apart. To derive an i o
expression that confirms that, we reconsider the definigon {10 determine the NP detector we use the same derivation as

the probability of false alarm given in IlI-A. Due to the different noise assumption, theAF2D
of the two hypotheses are now given by

Ppa = P(H1;Ho) = Pr{z[0] > v;Ho} N(0,C) under H,
:Q<’Y—M0) ®) - N(s,C) under H;

g
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Detection performance of matched filter

IV. RANDOM SIGNALS

1 A. Energy Detector

As mentioned in Chap. I, there are cases in which the signal
1 is rather modeled as a random process. Therefore, we assume
that the signals[n] in our problem statement (1) is a zero-
mean, white, wide-sense stationary Gaussian random [groces
1 with covariance matrixCs = o%I. As in the deterministic
case, we will later generalize the results to a process with
arbitrary covariance matrixCs. We could also say that the
1 signal is WGN but the term noise is somehow inappropriate.
The noise signalv[n] is assumed to be white Gaussian with
known variances? and to be independent of the signal.
| Due to our modeling assumptions, the received data vector
x is distributed according to a Gaussian PDF under either
% 2 4 s s 1w 12 1 1 1 2 hypothesis but with the difference that the variance chsauiige
Enery-to-nalse raion (48) 10 log ¢o” the signals[n] is present (i.e. for hypothesiq;). Hence

Probability of detection PD
o o o o
IS 3 o ~

o
w

o
N

0.1

Fig. 4. Detection performance of a matched filter

< N(0,0°T) under H
or explicitly N(0, (05 +0*)I) under H,
or explicitly
(x: 1) : LxTC )
pix; = ~ 1 exp |—=(x — X —
YT 2ro?) Y det} (C) 2 , .
1 L remt p(x; Ho) = W exp [—%2 X x:|
p(x;Hp) = T exp[—x Cc~ x} m(og +0°)]*
i 7to) (2702) % det 2 (C) 2 5 1 (13)
p(x;Ho) = m exp {%"2 X x]

Note that for WGNC = ¢2I and the equations reduce to the
ones in (2). Setting up the likelihood ratio test yields afteA

. . . fter deriving the test statistic as given in lll-A, we deeid
some algebraic manipulations

H, if
= / / N-1
T(x) =x's = 7;) x[n]s'[n] > ~ (11) T(x) =x"x = ,;) 2 [n] > & (14)

This detector is referred to asgeneralized replica-correlator
or generalized matched filtavhere the replica is the modified
signals’ = C~'s. Note that in case of WGNC = ¢2I and
the detector reduces to the one given in (3).

The NP detector computes tkeaergyin the received data and

is therefore callecenergy detectorThis is intuitively clear
because if the signal is present, the energy of the receizd d
increases. This becomes clear when we consider the scated te
statisticT’(x) = (1/N) S_" #2[n]. Since this expression is
simply the sample variance afln], we get the the value™>
underH, ando? + o2 underH;. Note that this is in contrast

Following the procedure, in IlI-E the detection performancto the detection of a deterministic signal where the meaneval

G. Performance of a Generalized Matched Filter

of a generalized matched filter is given by changed under either hypothesis.
Pp=0Q (Q’l(PFA) _ ‘/50715) (12) B. Performance of an Energy Detector

To derive the probability of detection for a energy detector
The probability of detection increases monotonically witkve have to determine the PDF of the test statistic given in
sC~!s and not with the ENR /0% as for WGN. In the latter (14). In general, a random variabtewhich is the sum of the
case only the signal energy was important and not the shapguares ofV independent and identically distributed Gaussian
Now, the signal can be designed to maxim@€~'s and random variables;; ~ N(0,1) (i.e. z = ZiNzglx?) has a
therefore Pp. Note that sinceC = ¢2I in case of WGN, PDF which ischi-squared Due to our modeling assumption,

(12) reduces again to its corresponding counterpart in. (10)we have to divide the test statistic under each hypothesis



ADVANCED SIGNAL PROCESSING 1 SE 6

Energy detector performance (N = 25)
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Fig. 6: Estimator-correlator for the detection of a Gaussia
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where
Fig. 5: Energy detector performance (N=25)

§=Cs(Cs+ o) 'x

by its corresponding variance so that the result is disteitbu

; . Since the detector correlates the received data vectdth an
according to a chi-squared PDF

estimates of the signal, it is denoted asstimator-correlator
Note that the test statistic in (15) is a quadratic form indb&a

T(x) , (i.e. an expression of the form” Ax where A is a matrix)
2~ XN under Hy and thus will not be a Gaussian random variablg. Reca_ll that
T(x) , the energy dgtector was a scalgg, rar_1dom variable. Fig.
W ~ XN under H; 6 shows the implementation of the estimator-correlatotteNo

further that the estimated signal is produced by filtering th
received data with a Wiener filter. Although not shown here,

After some mathematics we end up with § is therefore called &Viener filter estimatoof the signal.

v /a?
Pr=0Q. [ —-1—— V. SUMMARY
D=0 <o§/02+1)

We have introduced various methods for the optimum detec-
We see that as2/0? increases, the argument @x?v(') tion of deterministic and random signals in Gaussian noise.

decreases and thu%, increases. The probability of detection®ll derivations of the detectors were based on the Neyman-
curves are illustrated in Fig. 5. The figure shows just tHaearson criterion. For deterministic signals, the replica
qualitative run of the curves and represents an appromaticorrelator is an optlm_al dgtector in case of_wh|te Gaussian
because the right tail probability of a chi-squared PDF QIS The matched .fllter is equivalent but smply represent
difficult to compute. However, note that even signals witRnOther implementation of the same test statistic. To detec
lower variance than the noise variance (the signal-toenoi@ kKnown signal in colored Gaussian noise, the generalized

ratio becomes negative) can be detected given a ceRain matched filter turned out to be.the optim.al one. For random
signals, the energy detector is an optimal detector for a

zero mean, white Gaussian signal in white Gaussian noise.
C. Estimator-Correlator Generalization to signals with arbitrary covariance neasiled

to the estimator-correlator. The detection of a randomadign
After we assumed the signal to be a WGN process, we ndvcolored Gaussian noise has not been considered here.
generalize it to signals with arbitrary covariance mai@x.
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Using the explicit expressions for the PDFs (like the ones in
(13)), we get after some algebraic manipulations and us$iag t



