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Abstract  
It has long been known that Dynamic Time Warping 
(DTW) is superior to Euclidean distance for classification 
and clustering of time series. However, until lately, most 
research has utilized Euclidean distance because it is more 
efficiently calculated. A recently introduced technique 
that greatly mitigates DTWs demanding CPU time has 
sparked a flurry of research activity. However, the 
technique and its many extensions still only allow DTW 
to be applied to moderately large datasets. In addition, 
almost all of the research on DTW has focused 
exclusively on speeding up its calculation; there has been 
little work done on improving its accuracy.  In this work, 
we target the accuracy aspect of DTW performance and 
introduce a new framework that learns arbitrary 
constraints on the warping path of the DTW calculation.  
Apart from improving the accuracy of classification, our 
technique as a side effect speeds up DTW by a wide 
margin as well. We show the utility of our approach on 
datasets from diverse domains and demonstrate 
significant gains in accuracy and efficiency.     
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Figure 1: Note that while the two time series have an 
overall similar shape, they are not aligned in the time 
axis.  Euclidean distance, which assumes the ith point in 
one sequence is aligned with the ith point in the other, 
will produce a pessimistic dissimilarity measure.  The 
non-linear Dynamic Time Warped alignment allows a 
more intuitive distance measure to be calculated. 
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1  Introduction. 
In recent years, classification and clustering of time series 
data have become a topic of great interest within the 
database/data mining community.  Although the 
Euclidean distance metric is widely known to be very 
sensitive to distortion in time axis [3][9][22][27][44], the 
vast majority of research has used Euclidean distance 
metric or some minor variation thereof [2][12] 
[16][25][29][45]. The ubiquity of Euclidean distance in 
the face of increasing evidence of its poor accuracy for 
classification and clustering is almost certainly due to its 
ease of implementation and its time and space efficiency.  

 In spite of its computational lethargy, DTW still is the 
best way to solve a vast range of time series problems, and it 
is widely used in various disciplines:- In bioinformatics, 
Aach and Church successfully applied DTW to cluster RNA 
expression data [1].  In chemical engineering, it has been 
used for the synchronization and monitoring of batch 
processes [19].  DTW has been effectively used to align 
biometric data, such as gait [18], signatures [34], 
fingerprints [30], and ECGs [5]. Rath and Manmatha have 
successfully applied DTW to the problem of indexing 
repositories of handwritten historical documents [39] 
(Although handwriting is 2-dimensional, it can be useful to 
re-represent it as a 1-dimensional time series). DTW is often 
the technique of choice for indexing video motion streams 
[36]. In robotics, Schmill et al. demonstrate a technique that 
utilizes DTW to cluster robots sensory outputs [42].  And 
finally, in music, Zhu and Shasha (among many others [20]) 
have exploited DTW to query music databases with snippets 
of hummed phrases [46]. 

 The problem of distortion in the time axis can be 
addressed by Dynamic Time Warping (DTW), a distance 
measure that has long been known to the speech 
processing community [21][31][35][38][41][43] and was 
introduced to the database community by Berndt and 
Clifford [4]. This method allows non-linear alignments 
between two time series to accommodate sequences that 
are similar, but locally out of phase, as shown in Figure 1.  

 As Berndt and Clifford originally noted, DTW does 
not scale very well to large databases because of its 
quadratic time complexity. 



2.1   Review of DTW.  However, the greater accuracy of DTW comes at a 
cost. Depending on the length of the sequences, DTW is 
typically hundreds or thousands of times slower than 
Euclidean distance. For example, Clote et al. [11] report 
an experiment using DTW to align gene expression data 
that required 6 days. 

Suppose we have two time series, a sequence Q of length n, 
and a sequence C of length m, where: 

Q = q1,q2,…,qi,…,qn  (1) 

C = c1,c2,…,cj,…,cm  (2) 
 During the past decade, there has been a huge amount 
of work on speeding up data mining time series under the 
Euclidean distance [7][16][24][45] (see [25] for a 
comprehensive listing).  However, the first practical 
technique for speeding up data mining time series under 
DTW [23] has only been introduced very recently.  The 
technique is based on using DTWs “warping envelope” 
constraint to lower bound the true DTW distance, hence 
pruning off many costly distance computations.  This 
work has sparked a flurry of research interest 
[10][17][20][33][47], ensuring that the warping-envelope 
lower bounding technique has become a relatively mature 
technology within a year.  However, there are still two 
areas in which improvements need to be made: scalability 
to truly massive datasets and classification accuracy. 

 To align these two sequences using DTW, we construct 
an n-by-m matrix where the (ith, jth) element of the matrix 
corresponds to the squared distance, d(qi,cj) = (qi - cj)2 , 
which is the alignment between points qi and cj.  To find the 
best match between these two sequences, we can find a path 
through the matrix that minimizes the total cumulative 
distance between them.  A warping path, W, is a contiguous 
set of matrix elements that characterizes a mapping between 
Q and C. The kth element of W is defined as wk = (i,j)k. So 
we have: 

W = w1, w2, …,wk,…,wK         max(m,n) ≤ K < m+n-1 (3) 

 By definition, the optimal path Wo is the path that 
minimizes the warping cost: 
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       (4)  In this work, we address these problems with a novel 
technique. Our approach is based on learning arbitrarily 
shaped warping-envelope constraints: These learned 
constraints allow: 

 This path can be found using dynamic programming to 
evaluate the following recurrence which defines the 
cumulative distance γ(i,j) as the distance d(i,j) found in the 
current cell and the minimum of the cumulative distances of 
the adjacent elements:   

• Improved accuracy; by allowing some warping that 
increases intra-class similarity, while discouraging 
warping that increases inter-class similarity. 

 γ(i,j)  = d(qi,cj) + min{ γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1) }     (5)  • Faster classification and similarity search; by 
exploiting the constraints to achieve extraordinarily 
tight lower bounds, thus allowing pruning.  

 In practice, we do not evaluate all possible warping 
paths, since many of them correspond to pathological 
warpings (for example, a single point on one ECG mapping 
to an entire heartbeat in another ECG).  Instead, we consider 
the following constraints that decrease the number of paths 
considered during the matching process. This reduction in 
the number of paths considered also has the desirable side 
effect of speeding up the calculations, although only by a 
(small) constant factor. 

An interesting and useful property of our technique is that 
it includes the ubiquitous Euclidean distance and classic 
DTW as special cases. 

 The rest of the paper is organized as follows.  Section 
2 gives some background on time series data mining, a 
review of DTW, and related work.  Section 3 reviews the 
lower bounding measures and its utility.  In Section 4, we 
introduce our approach, a novel framework that we call 
the R-K Band, to the problem.  Section 5 contains an 
empirical evaluation on three real-world datasets.  And 
lastly, Section 6 gives conclusions and directions for 
future work. 

 Boundary conditions: The path must start in w1 = (1,1) 
and end in wK = (m,n), that is, the warping path has to start 
at the bottom left and end at the top right of the matrix. 

 Continuity condition: Every point in the query and 
candidate sequences must be used in the warping path, and 
both i and j indexes can only increase by 0 or 1 on each step 
along the path.  In other words, if we take a point (i, j) from 
the matrix, the previous point must have been (i-1, j-1), (i-1, 
j), or (i, j-1). 

2  Background. 
The measurement of similarity between two time series is 
an important subroutine in many data mining applications, 
including rule discovery [12], clustering [1] [14], anomaly 
detection [13], motif discovery [8], and classification 
[15][22]. The superiority of DTW over Euclidean distance 
for these tasks has been demonstrated by many authors 
[1][3][5][27][44]; nevertheless, DTW is less familiar to 
the data mining community. We will therefore begin with 
overview of DTW and its recent extensions.    

 Monotonic condition: Given wk = (a,b) then wk-1 = 
(a',b') where a–a' ≥ 0 and b-b' ≥ 0. The warping path cannot 
go backward in time; both i and j indexes either stay the 
same or increase.  They can never decrease. 

 Slope constraint condition: The path should not be too 
steep or too shallow.  This prevents very short subsequences 



to match very long ones.  The condition is expressed as a 
ratio a/b, where b is the number of steps in the x direction 
and a is the number in the y direction.  After b steps in x, 
it must make a step in y, and vice versa.  

 Adjustment Window condition: An intuitive 
alignment path is unlikely to drift very far from the 
diagonal.  The distance that the path is allowed to wander 
is limited to a window (or “band”) of size r, directly 
above and to the right of the diagonal.  

 By applying these conditions, we can restrict the 
moves that can be made from any point in the path and 
therefore reduce the number of paths that need to be 
considered. 

 The Euclidean distance between two sequences can 
be seen as a special case of DTW where the kth element of 
W is constrained such that wk = (i,j)k , i = j = k. Note that 
it is only defined in the special case where the two 
sequences have the same length. The time and space 
complexity of DTW is O(nm). However, the constraints 
above mitigate this only by a constant factor. 

 This review of DTW is necessarily brief; we refer the 
interested reader to [31][37] for more details. 

2.2   Related work. 
While there has been much work on indexing time series 
under the Euclidean metric over the last decade 
[7][16][24][25][45], there has been much less progress on 
indexing under DTW.  Additionally, all of the work on 
DTW has focused exclusively on speeding up DTW; it 
does not appear that researchers have considered the 
possibility of making DTW more accurate. 

 Keogh [23] introduced a novel technique for exact 
indexing of DTW using global constraints and Piecewise 
Constant Approximation [24].  The proposed lower 
bounding measure, LB_Keogh, exploits the global 
constraints to produce a very tight lower bound that 
prunes off numerous expensive DTW computations.   The 
method has been re-implemented and extended by several 
other research groups [17][28][46], and is now the basis 
of a successful “query-by-humming” system [47] and a 
system for indexing historical handwriting documents 
[33].  Because of the power and widespread adoption of 
this approach, we will utilize LB_Keogh lower bounding 
function as a starting point for this work.  

 We note there has been some work on obtaining 
warping alignments by methods other than DTW [3][32]. 
For example, Kwong et al. consider a genetic algorithm 
based approach [32], and recent work by Bar-Joseph et al. 
considers a technique based on linear transformations of 
spline-based approximations [3]. However, both methods 
are stochastic and require multiple runs (possibly with 
parameter changes) to achieve an acceptable alignment. In 
addition, both methods are clearly non-indexable. 

Nevertheless, both works do reiterate the superiority of 
warping over non-warping for pattern matching.  

3   Lower Bounding the DTW Distance. 
In this section, we explain the importance of lower 
bounding and briefly review the LB_Keogh lower bounding 
distance measure [23].  

3.1   The utility of lower bounding measures. 
Time series similarity search under the Euclidean metric is 
heavily I/O bound; however, similarity search under DTW 
is also very demanding in terms of CPU time. One way to 
address this problem is to use a fast lower bounding 
function to help prune sequences that could not possibly be 
the best match (see [23] for full algorithm detail). 

 There are only two desirable properties of a lower 
bounding measure:  

• It must be fast to compute. Clearly, a measure that takes 
as long to compute as the original measure is of little 
use. In our case, we would like the time complexity to 
be at most linear in the length of the sequences.  

• It must be a relatively tight lower bound. A function can 
achieve a trivial lower bound by always returning zero 
as the lower bound estimate. However, in order for the 
algorithm to be effective, we require a method that 
more tightly approximates the true DTW distance. 

 While lower bounding functions for string edit, graph 
edit, and tree edit distance have been studied extensively 
[31], there has been far less work on DTW, which is very 
similar in spirit to its discrete cousins. Below, we will 
review global constraints, which can be exploited to produce 
tight lower bounds.     

3.2   Existing lower bounding measures. 
As previously noted, virtually all practitioners using DTW 
constrain the warping path in a global sense by limiting how 
far it may stray from the diagonal [4][9][19][21][27] 
[35][41][43]. The subset of matrix that the warping path is 
allowed to visit is called a warping window or a band. 
Figure 2 illustrates two of the most frequently used global 
constraints in the literature, the Sakoe-Chiba Band [41] and 
the Itakura Parallelogram [21].  

 In addition to helping to speed up the DTW distance 
calculation, the warping window prevents a pathological 
warping, where a relatively small section of one sequence 
maps onto a relatively large section of another.  The 
importance of global constraints was documented by the 
originators of the DTW algorithm, Sakoe and Chiba, who 
were exclusively interested in aligning speech patterns [41].  
However, it has been empirically confirmed in many other 
settings, including music [20][47], finance [4], medicine 
[19], biometrics [18][34], chemistry [19], astronomy, 
robotics [42], and industry.  



 

Figure 2:  Global constraints limit the scope of the 
warping path, restricting them to the gray areas.  The 
two most common constraints in the literature are the 
Sakoe-Chiba Band and the Itakura Parallelogram. 

 As mentioned earlier, a lower bounding distance 
measure, LB_Keogh, has been introduced for the task of 
indexing DTW.  This lower bounding technique uses the 
warping window, e.g. Sakoe-Chiba Band or Itakura 
Parallelogram, to create a bounding envelope above and 
below the query sequence.  Then the squared sum of the 
distances from every part of the candidate sequence not 
falling within the bounding envelope, to the nearest 
orthogonal edge of the bounding envelope, is returned as 
its lower bound.  The technique is illustrated in Figure 3. 
This lower bound can prune off numerous number of 
expensive DTW computations, using the simple algorithm 
described in [23]. 

 

Figure 3: The Sakoe-Chiba Band A) can be used to 
create an envelope B) around a query sequence Q.  
The Euclidean distance between any candidate 
sequence C and the closest external part of the 
envelope C) is a lower bound for the DTW distance. 

4   Ratanamahatana-Keogh Band (R-K Band). 
The warping window constraints discussed above have 
been used to restrict the warping paths to force more 
intuitive alignments, as well as to speed up the 
calculation.  However, surprisingly little research has 
been done on discovering the best shape and size of the 
band. Instead, the relatively ad-hoc shapes of the bands 
introduced exclusively in the context of speech 
recognition in the 1970s have survived DTWs migration 
to diverse domains.  Many researchers seem to believe 
that the wider the band, the better classification accuracy 
[47], and that narrow bands are a necessary evil, required 

only to make the algorithm tractable. In fact, this is not true; 
in Section 4.2 we carry out extensive experiments in which 
we vary the width of Sakoe-Chiba Band. We find that the 
effect of the band width on accuracy is generally very large, 
and is heavily domain dependent. This observation 
motivates our work. If the width of the constraint band can 
greatly affect accuracy, then it is likely that the shape of the 
band can too. If we can somehow find the optimal band 
shape for a given problem, we may be able to boost the 
accuracy. Furthermore, if the optimal band shape is tighter 
than the classic bands, we can simultaneously reduce the 
CPU time and increase the tightness of the lower bounds, 
producing speed up.  

 C 
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 In order to discuss the effect of constraint shape on 
accuracy, we must first introduce a representation that 
allows the specification of arbitrary shaped constraints. For 
consistency with the literature, we call this representation 
the Ratanamahatana-Keogh band, and introduce it in the 
next section.  

4.1   A general model of global constraints. 
We can view a global constraint as constraining the indices 
of the warping path wk = (i,j)k such that j-Ri ≤ i ≤ j+Ri, 
where Ri is a term defining the allowed range of  warping, 
for a given point in a sequence. In the case of the Sakoe-
Chiba Band, R is independent of i; for the Itakura 
Parallelogram, R is a function of i. Here we define a 
parameter vector R more concretely.  

Ri = d    0 ≤ d ≤ m, 1 ≤ i ≤ m,      (6) 
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A ) where Ri is the height above the diagonal in the y direction, 
as well as the width to the right of the diagonal in the x 
direction.  Note that |R| = m, and the above definition forces 
R to be symmetric, i.e. the constraint above the diagonal is 
the mirror image of the one below the diagonal. 

 As an example, we can create a Sakoe-Chiba Band of 
overall width of 11 (width 5 strictly above and to the right 
of the diagonal) with the definition  
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or an Itakura Parallelogram with the definition                                            
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 Even the Euclidean distance can be defined in terms of 
Ri = 0; 1 ≤ i ≤ m; only the diagonal path is allowed.  More 
generally, we can define any arbitrary global constraint with 
the vector R. Figure 4 illustrates some examples.  

 We call a global constraint specified by R a 
Ratanamahatana-Keogh-Band (which we will abbreviate as 
an R-K Band). 

 



 In some cases, we may be able to manually construct 
e best set of R-Kc Bands for classification, based on 

domain knowledge. Consider the following motivating 
problem; the 2-class dataset shown in Figure 6 (top): Since 
we can see from Figure 6 (top) that both classes have similar 
variability in the x-axis approximately around points 50 to 
135, we can allow some warping in those regions of the 
hand-constructed bands, R-K1 and R-K2.  And since class 1 
has an extra place of variability in y-axis approximately 
between data points 150 and 225, we accordingly allow 
some warping in that section of R-K1 as well.  The shape of 
hand-created R-K1 and R-K2 Bands are shown in Figure 6 
(bottom). 
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Figure 4: We can use R to create arbitrary global 
constraints.  A)  Note that the width of the band may 
increase or decrease.  We can use R to specify all 
existing global constraints, including the Sakoe-
Chiba Band B) and the Itakura Parallelogram C). 
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increase or decrease.  We can use R to specify all 
existing global constraints, including the Sakoe-
Chiba Band B) and the Itakura Parallelogram C). 
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classification.  In particular, we can use a different R-K 
Band for each class. We will denote the band learned for 
the cth class, as the R-Kc Band. 
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4.2  Are we better off with wider band? 4.2  Are we better off with wider band? 
Virtually, all researchers have used a Sakoe-Chiba Band 
with a 10% width for the global constraint. This setting 
appears to be the result of historical inertia, rather than 
some remarkable property of this particular constraint. 
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some remarkable property of this particular constraint. 

 To test the effect of the warping window size to the 
classification accuracies, we perform an empirical 
experiment on 3 datasets for which class labels are 
available (the datasets details are fully explained in 
section 5).  We vary the warping window size from 0 
(Euclidean) to 100 and record the accuracies.  The results 
are shown in Figure 5.  
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are shown in Figure 5.  

 Surprisingly, wider bands do not always result in 
increased accuracy, as commonly believed [46]. More 
often, the accuracy peaks very early at smaller window 
size.  

 Surprisingly, wider bands do not always result in 
increased accuracy, as commonly believed [46]. More 
often, the accuracy peaks very early at smaller window 
size.  

Figure 5: The classification accuracies of the 3 
datasets with different warping window sizes (x-
axis), using the uniform Sakoe-Chiba Bands.  Most 
accuracies peak at very small window sizes. 

Figure 5: The classification accuracies of the 3 
datasets with different warping window sizes (x-
axis), using the uniform Sakoe-Chiba Bands.  Most 
accuracies peak at very small window sizes. 

 Apart from the width, different shapes of the band 
also give different accuracies as well.  For example, one 
may pick the Itakura Parallelogram over the uniform 
Sakoe-Chiba band to perform classification in speech 
recognition problem, since most speech tends to have the 

most variability in its middle, and very little in the 
beginning or the end.  Consequently, choosing a good shape 
for the band may help improve its classification accuracy as 
well.  Having introduced an R-K Band, we can easily 
represent any shape and size warping windows.  However, 
we are left with the question of how we can discover the 
best R-K Band for the task at hand. 

 Apart from the width, different shapes of the band 
also give different accuracies as well.  For example, one 
may pick the Itakura Parallelogram over the uniform 
Sakoe-Chiba band to perform classification in speech 
recognition problem, since most speech tends to have the 

most variability in its middle, and very little in the 
beginning or the end.  Consequently, choosing a good shape 
for the band may help improve its classification accuracy as 
well.  Having introduced an R-K Band, we can easily 
represent any shape and size warping windows.  However, 
we are left with the question of how we can discover the 
best R-K Band for the task at hand. 

A)

C

Q

A)

C

Q

C

Q

B)

C

Q

B)

C

Q

C)

C

Q

C)

C

Q

C)  
th

  

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Class 1

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Class 1

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Class 2

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Class 2

50 100 150 200 250

50

100

150

200

250

Class 1

50 100 150 200 250

50

100

150

200

250

Class 1

50 100 150 200 250

50

100

150

200

250

Class 2

50 100 150 200 250

50

100

150

200

250

Class 2

Figure 6: (Top)  Some instances from the trace dataset.  
(Bottom)  The hand-constructed bands created for each 
individual class; they achieve 100% accuracies in 
classification. 
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(Bottom)  The hand-constructed bands created for each 
individual class; they achieve 100% accuracies in 
classification. 

 The Euclidean accuracy for this problem is only 90%. 
The hand-constructed R-K Bands illustrated in Figure 6 
(bottom) give perfect accuracy with the widest portion of 
the band of 4.  However, we have to try several widths and 
shapes until we obtain the smallest width of the shape we 
want with the best accuracy. In addition, we make some 
unintuitive discoveries. We set the R-K2 Band to the 
Euclidean special case, and still get perfect results. So, 
while there is variability in the time-axis of Class 2, it is not 
important for discriminating it from Class 1. In general, 
even for this simplest of problems we have great difficulty 
in hand crafting high quality R-K Bands, and only converge 
on the fine solution after much tweaking. Note that this is 
only a 2-class problem; when we try to expand it to a 4-class 
problem (see Section 5), the difficulties in constructing R-Kc 
Bands appear to increase exponentially. 
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o Distance metric: h(env) = estimated ratio of the 
mean DTW distance among the correctly classified 
and misclassified objects. 

o Distance metric: h(env) = estimated ratio of the 
mean DTW distance among the correctly classified 
and misclassified objects. 

 While the results above are tentative vindication of 
the R-K Band representation, for most real-world 
problems it is simply not possible to build the high quality 
R-Kc Bands by hand. Instead, in the following sections, 
we will show how we can learn them automatically from 
the data.  

Calculate h(1)

Calculate h(2)

h(2) > h(1) ? 
Yes No 

Calculate h(1)

Calculate h(2)

h(2) > h(1) ? 
Yes No 

4.3 Learning multiple Ratanamahatana-Keogh 
bands for classification. 

We have shown that it is not generally possible to 
handcraft accurate R-K Bands. Fortunately, as we will 
show, it is possible to pose the problem as a classic search 
problem, and thus take advantage of the wealth of 
research on search from the artificial intelligence 
community [39]. 
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 Using the generic heuristic search techniques 
elucidated in [39], we merely need to specify the direction 
of the search, i.e forward, backward or bi-directional, the 
initial state, heuristic function, the operators, and the 
terminal test.  Forward search starts with the initial Sakoe-
Chiba band (uniform) of width 0 (Euclidean), and 
backward search starts from the uniform band of the 
maximum width m, above and to the right of the diagonal.   
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maximum width m, above and to the right of the diagonal.   

 Before giving a full detailed explanation of our 
learning algorithm, we first give a simple intuition behind 
this approach as illustrated in Figure 7.   

 Before giving a full detailed explanation of our 
learning algorithm, we first give a simple intuition behind 
this approach as illustrated in Figure 7.   

 For a forward search, we start off with the Euclidean 
Band, and try to increment the whole section of the 
envelope before re-evaluating its accuracy.  If an 
improvement is made, we keep on incrementing that 
whole section of the envelope; otherwise, we split that 
section in half and recursively increment each portion 
individually before re-evaluation.  Backward search is 
very similar, except that we start off with a wider band 
and try to decrement the size instead of incrementing.  We 
do not consider bi-directional search in this work for 
brevity.   
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brevity.   

  

Figure 7: An illustration of our forward search 
algorithm using the accuracy metric. 
Figure 7: An illustration of our forward search 
algorithm using the accuracy metric. 

• A set of operators, which defines all the legal 
operations that can be taken at each stage.  There are 
two available operations at each stage after the heuristic 
function is evaluated: 

• A set of operators, which defines all the legal 
operations that can be taken at each stage.  There are 
two available operations at each stage after the heuristic 
function is evaluated: 

o If improvement is made, continue working on the 
same piece of envelope (as specified by start and 
end points. 

o If improvement is made, continue working on the 
same piece of envelope (as specified by start and 
end points. 

 The rest of the components of the search algorithm 
are enumerated below: 
 The rest of the components of the search algorithm 
are enumerated below: o If no improvement is made, first the modification 

to the envelope needs to be undone, then redo the 
modification on the left half (start:mid-1) and the 
right half (mid:end) individually. 

o If no improvement is made, first the modification 
to the envelope needs to be undone, then redo the 
modification on the left half (start:mid-1) and the 
right half (mid:end) individually. 
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the band for each class. 
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of the following is true: • A heuristic function, which is used to evaluate the 
quality of the operation. While we are ultimately 
interested in improving accuracy, there may be a 
danger of overfitting using accuracy as the heuristic 
function. We therefore consider two different 
heuristics in this work: 

• A heuristic function, which is used to evaluate the 
quality of the operation. While we are ultimately 
interested in improving accuracy, there may be a 
danger of overfitting using accuracy as the heuristic 
function. We therefore consider two different 
heuristics in this work: 

• No improvement can be made. • No improvement can be made. 

• The envelope’s width reaches m, or • The envelope’s width reaches m, or 

• When a condition end-start+1 ≤ threshold is 
met for all the pieces of the envelope. 

• When a condition end-start+1 ≤ threshold is 
met for all the pieces of the envelope. o Accuracy metric: h(env) = estimated accuracy 

using DTW, based on the envelope env. 
o Accuracy metric: h(env) = estimated accuracy 

using DTW, based on the envelope env. o Backward Search: The search is complete when 
one of the following is true: 

o Backward Search: The search is complete when 
one of the following is true: 



• No improvement can be made. 

• The envelope has width 0 (Euclidean), or 

• A condition end-start+1 ≤ threshold is met 
for all the pieces of the envelope. 

 In principle, the threshold could be a single cell, but 
this would produce a greater danger of overfitting. In this 

work, we set the threshold to be 
2
m , where m is the 

length of the input sequence.  

Table 1: A backward hill-climbing search algorithm 
that finds a proper envelope for each individual class. 

Algorithm LearnEnv() 

1. Evaluate (with initial envelopes); 
2. foreachclass i = 1:c 
3.   Enqueue(1, m, Qi); 

4. endfor; 
5. while !empty(Qi:c) 

6.   foreachclass i = 1:c 
7.     if !empty(Qi) 

8.       [start,end] = Dequeue(Qi); 

9.       Decrement the envelope Envi(start:end)  

10.       improve = Evaluate(with the  
                    modified envelope Envi); 

11.       if improve 
12.         Enqueue(start, end, Qi); 

13.       else 
14.         Undo the modification 
15.         Enqueue(start, mid-1, Qi); 

16.         Enqueue(mid, end, Qi); 

17.       endif; 
18.     endif; 
19.   endfor; 
20. endwhile; 
21. return Envi:c 

 

 Table 1 shows the backward learning algorithm that 
discovers the high-quality envelope for each individual 
class.  The only different between backward and forward 
search algorithm is on line 9; we increment the width of 
the envelope for forward search, whereas we decrement 
the width of the envelope for backward search.    

 The algorithm starts off by evaluating all the initial 
envelopes of all classes and enqueues the whole length of 
the envelope into the queue that belongs to each 
individual class (lines 1-4).  As long as there is something 
left in the queue of any classes (line 5), it takes turns, 
starting from class 1 up to class c, to make some 
modification and re-evaluate the envelope (lines 6-10).  If 
that envelope provides some improvement, then that piece 
of envelope is kept and the width is further reduced 
(increased in forward search) in the next round of iteration 
(lines 11-12).  If it provides no improvement, we have to 
restore the previous envelope and try to re-modify its 
smaller pieces (left half and right half) in the next round 
of iterations (lines 13-16).  Note that only one envelope 

can be modified at each time before the evaluation; the rest 
of the envelopes of the remaining classes must remain the 
same since a modification on an individual envelope may 
affect the classification in other classes as well.  This way, 
when there is some improvement, we know exactly which 
envelope modification it comes from. The process is 
repeated until no further change could be made to any of the 
envelopes that improves the accuracy; the algorithm then 
returns the resulting envelopes for all classes (Envi:c,, cf. 
Table 1, line 21).   

 Because “Local maximum” is a well-known drawback 
of the hill-climbing search, our algorithm does not guarantee 
an optimal solution.  To mitigate this, we can perform all 
four combinations of the search to find the set of envelopes 
that yields the best outcome.  The four combinations are: 

o Forward search with Accuracy metric. 

o Forward search with Distance metric. 

o Backward search with Accuracy metric, and 

o Backward search with Distance metric. 

 Table 2 shows the Evaluate function in greater detail.  
Lines 2-16 locate the best match for one test instance, 
according to the DTW distance with LB_Keogh function 
used to prune off some unnecessary computations.  It loops 
through all examples as it carries out the “leaving-one-out” 
scheme (line 1).  Once the best match is found, the DTW 
distance is recorded as well as the statistic of correctly 
classified vs. misclassified examples (lines 17-23).  If the 
new distance metric is smaller or the new accuracy is larger 
than what we have so far, that means we get some 
improvement (lines 25-31).  In backward search, we are 
trying to make the envelope smallest possible; this in turn 
counts identical metric value as an improvement as well; 
smaller or equal value of distmetric and larger or equal 
value of accuracy are counted as improvement. 

Table 2: An algorithm to evaluate both accuracy- and 
distance-metric heuristic functions for both forward and 
backward search.  If the input envelopes yield some 
improvement, the algorithm returns 1, otherwise returns 
0. 

Algorithm Evaluate() 

 

1. for i = 1:num_examples 

2.   test_instance = Input[i]; 

3.   best_so_far = Infinity; 

4.   best_index = -1; 

5.   for j = 1:num_examples 

6.     if i != j 

7.       LB_dist = LB_keogh(test_instance,  

                    Input[j], EnvInput[j][0]); 

8.       if LB_dist < best_so_far 

9.         true_dist=dtwDistance(test_instance  

                        ,Input[j],EnvInput[j][0]); 

10.         if true_dist < best_so_far 
11.           best_so_far = true_dist; 



12.           best_index = j; 
13.         endif; 
14.       endif; 
15.     endif; 
16.   endfor; 
17.   if Input[best index][0]==test instance[0]    

18.     num_correct++; 
19.     dist += dtwDistance(test_ instance,  
               Input[best_index],Envtest_instance[0]); 

20.   else 
21.     num_wrong++; 
22.     wrongdist += dtwDistance(test_instance, 
               Input[best_index],Envtest_instance[0]); 

23.   endif; 
24. endfor; 
25. distmetric = (dist*num_wrong)/(wrongdist *  
                 num_correct); 

26. if smaller distmetric or larger num_correct 
27.   improve = 1; 
28. else 
29.   improve = 0; 
30. endif; 
31. return improve; 

 

Figure 8: Stills from the video Gun-Draw problem; the 
right hand is tracked and converted into motion streams. 

 The overall motions of both classes are very similar.  
However, it is possible for human to visually classify the 
two classes with great accuracy, after noting that the actor 
must lift his/her hand above a holster, then reach down for 
the gun, this action creates a subtle distinction between the 
classes as shown in Figure 9. 
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 In the following section, we evaluate our proposed 
framework on three real-world datasets.  

5   Experimental Evaluation. 
In this section, we test our proposed approach with a 
comprehensive set of experiments.  Figure 9: (left) Some time series from the Gun-Draw x-

axis data.  (right) Some snippets from the Point x-axis 
data. 5.1 Dataset. 

We have chosen three datasets to be tested in our work. 
 The different in height between the two actors is not too 
much of a problem, since a standard pre-processing step in 
matching motion streams is to perform Z-normalization 
before performing comparisons [6][26]. 

5.1.1 Gun Problem 
This dataset comes from the video surveillance domain.  
The dataset has two classes, each containing 100 
examples.  All instances were created using one female 
actor and one male actor in a single session.  The two 
classes are: 

 The dataset contains 200 instances, 100 for each class.  
Each instance has the same length of 150 data points. 

5.1.2 Trace dataset • Gun-Draw: The actors have their hands by their 
sides.  They draw a replicate gun from a hip-mounted 
holster, point it at a target for approximately one 
second, then return the gun to the holster, and their 
hands to their sides.  Figure 8 illustrates some 
snippets from the video.  

This dataset is a subset of the Transient Classification 
Benchmark (trace project). 

 It is a synthetic dataset designed to simulate 
instrumentation failures in a nuclear power plant, created by 
Davide Roverso.  The full dataset consists of 16 classes, 50 
instances in each class.  Each instance has 4 features.   • Point: The actors have their hands by their sides.  

They point with their index fingers to a target for 
approximately one second, and then return their 
hands to their sides. 

 For simplicity, we only use the second feature of class 2 
and 6, and the third feature of class 3 and 7 for our 
experiment.  Our dataset contains 200 instances, 50 for each 
class.  All instances are interpolated to have the same length 
of 275 data points. Examples of each class are shown in 
Figure 10. 

 For both classes, we tracked the centroid of the right 
hand in both the X- and Y-axes; however, in this 
experiment, we will consider just the X-axis for 
simplicity. 

5.1.3 Handwritten Word Spotting data 
This is a subset of the WordSpotting Project dataset created 
by Manmatha and Rath [33]. 



  In the full dataset, there are 2,381 words with four 
features that represent each word image’s profiles or the 
background/ink transitions. 

0

 For simplicity, we pick the "Projection 
Profile"(feature 1) of the four most common words, “the”, 
“to”, “be”, and “that”, to be used in our experiment.  “the” 
has 109 instances; “to” has 91 instances; “be” has 38 
instances, and “that” has 34 instances. All instances are 
interpolated to have the same length of 100 data points. 
Once combined, we obtain a dataset of 272 instances.   

5.2  Experimental results. 
In this section, we test our proposed approach with a 
comprehensive set of experiments.  On all three datasets 
mentioned in the previous section, we perform 
classification using the following approaches:  

• Euclidean Distance. 

• Dynamic Time Warping with Sakoe-Chiba Band 
(uniform warping window) of size 1 up to 100.   The 
best accuracy with smallest-size band is to be 
reported, and 

• Dynamic Time Warping with R-K Bands that we 
learn from the input data. 

 Note that we only compare Dynamic Time Warping 
with Euclidean Distance metric in this work.  It has been 
forcefully shown in [26] that many of the more complex 
similarity measures proposed in other work have higher 
error rates than a simple Euclidean Distance metric, and 
therefore by transitivity have higher error rates than DTW 
itself.  We therefore exclude those techniques from our 
consideration in this experiment. The learned bands from 
each datasets are shown in Figure 10 and Figure 11.   Figure 10: Trace dataset: The R-K Bands for all four 

classes.  We measure the accuracy and CPU time on each 
dataset, using the 1-nearest-neighbor with “leaving-one-
out” classification method.  The lower bounding 
technique introduced in [23] is also integrated in all the 
DTW calculations to help achieve some speedup.  
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 Table 3 compares the classification accuracies (Error 
rates) for all approaches, and Table 4 compares the CPU 
time for each method to achieve these accuracies, both 
with using Lower Bounding measure and without. 
Euclidean distance metric is essentially a DTW with 
uniform band of width 0 (no warping allowed).  For the 
uniform (Sakoe-Chiba) band, we report the best accuracy 
within the window width between 1 and 100.   We also 
report the accuracy at 10% warping window size since it 
is the number most researchers typically have been using 
in DTW researches [23][38][41]. 

Figure 11: Gun dataset: The R-K Bands for the Gun 
(left) and Point (right) classes. 



Table 3: Classification Error Rates (%) for all three datasets, using Euclidean distance, DTW with the best uniform 
band reported, DTW with 10% uniform band, and DTW with our framework, R-Kc Bands. 

 Euclidean Best Uniform 10% Uniform R-K Bands 
Gun 5.50% 1.00% at Ri = 4 4.50% at Ri = 15 0.50% with max(Ri) = 4 
Trace 11.00% 0.00% at Ri = 8 0.00% at Ri = 27 0.00% with max(Ri) = 7 
Word Spotting 4.78% 1.10% at Ri = 3 2.21% at Ri = 10 0.37% with max(Ri) = 4 

 

Table 4: CPU time (msec) for all three datasets, both with and without the use of Lower Bounding measure. 

 Euclidean Best Uniform 10% Uniform R-K-Bands 
Gun (LB) N/A 2,440 5,430 1,440 
No LB 60 11,820 17,290 9,440 
Trace (LB) N/A 16,020 34,980 7,420 
No LB 210 144,470 185,460 88,630 
Word Spotting (LB) N/A 6,100 14,770 1,940 
No LB 40 8,600 12,440 7,480 

 

 We can readily see from the above figures and tables 
that the learned R-K Bands usually are of smaller sizes than 
the uniform case; some portions of the band even have zero 
width.  This speeds up the time needed for classification.  
We can improve the DTW calculation from running several 
hundred times slower than Euclidean to running about only 
30 times or so slower (or even less than 5 times slower in 
some other datasets).  In addition, classification with R-K 
Bands always achieves higher accuracies than Euclidean or 
any-size uniform bands (or at least as accurate as the better 
of the two methods). 

 In the three datasets discussed above, it is known that 
there is some distortion in the time axis.  Where no 
distortion exists (and assuming Gaussian noise), Euclidean 
distance is known to be the optimal metric [16]. If we were 
to apply DTW in these cases, we may get lower accuracy, 
and we will certainly waste a lot of extra time.  For real-
world problems, we usually never know if Euclidean 
distance is the best approach. So, it would be very desirable 
if our approach could discover this automatically.  

 To see if this is the case, we performed an additional 
classification experiment on the well-known Cylinder-Bell-
Funnel datasets [15][22], on which Euclidean distance is 
known to perform extremely well, with sufficient number of 
instances. With 100 instances in each of the three classes, 
the Euclidean distance metric achieves 100% accuracy in 
0.16 seconds. DTW also achieves perfect accuracy, but 
wastes a large amount of classification time without 
realizing the trivial solution.   

 The DTW algorithm with 10% warping window size 
requires 27.63 seconds.  Our approach, learning R-Kc Bands, 
quickly discovers that perfect accuracy can be achieved with 
three bands of size zero.  In other words, our approach is 
capable of learning the optimal-size bands for this problem.  
With the resultant R-Kc Bands of size 0, we also get the 
perfect accuracy using only 0.89 seconds.  This is slightly 
slower than the Euclidean distance since the R-Kc Bands are 
the special case of DTW thus a distance matrix has to be 

created during the computation.  However, it is still much 
faster than the classic 10%-uniform DTW.   It is also trivial 
to force the algorithm to perform the original Euclidean 
metric calculation instead of the DTW calculation of the 
zero band size. 

6  Conclusions and Future Work. 
In this work, we have introduced a new framework for 
classification of time series. The Ratanamahatana-Keogh 
Band (R-K Band) allows for any arbitrary shape and size of 
the warping band.  We have also introduced a heuristic 
search algorithm that automatically learns the R-K Bands 
from the data.  With an extensive empirical evaluation, we 
have shown that our approach can reduce the error rate by 
an order of magnitude, and reduce the CPU time of DTW, 
also by an order of magnitude. An attractive property of our 
approach is that it includes the two most used distance 
measures, Euclidean distance and DTW as special cases. 
One advantage of this fact is that it enables us to simply 
“slot-in” our representation to the sophisticated techniques 
available for indexing time series envelopes 
[10][17][20][33][47], thus achieving even greater speedup 
than shown here.  

 We plan to extend this work in several directions. First 
we intend to investigate the theoretical properties of R-K 
Bands, and the search algorithms defined on them. We also 
plan to consider a more generalized form of our framework, 
in which a single R-K Band is learned for an application 
domain. For example, what is the best single band for 
indexing George Washington’s handwriting [33], does it 
differ from the best band for, say Isaac Newton’s 
handwriting? 

 Finally, for some applications, it may be possible to 
examine the R-K Bands to glean knowledge about the 
domain. For example, if we learn to classify normal 
heartbeats versus supraventricular arrhythmias, and discover 
that R-K Bands are narrow at both ends, but wide in the 
center, this would suggest that the discriminating difference 
is contained within the T-U wave of the ECG [5]. 
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