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An Example

Let’s introduce the concept of maximum entropy through a simple
example:

I want to model a proper French translation of the English word
in

I we collect a lot of examples from expert translators (feature
selection)

I and then try to construct a model of this process (model
selection)
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An Example

I first observation: expert tanslator always chooses among these
five French phrases:

dans, en, à, au cours de, pendant

I so we can define the first constraint on our model p:

p(dans)+p(en)+p(à)+p(au cours de)+p(pendant) = 1

I with only this knowledge, the most appealing model is the
uniform model:

p(dans)=1/5; p(en)=1/5; p(à)=1/5;
p(au cours de)=1/5; p(pendant)=1/5;
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dans, en, à, au cours de, pendant

I so we can define the first constraint on our model p:

p(dans)+p(en)+p(à)+p(au cours de)+p(pendant) = 1

I with only this knowledge, the most appealing model is the
uniform model:

p(dans)=1/5; p(en)=1/5; p(à)=1/5;
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An Example

I one more observations: the translator chose either dans or en
in 30% of the time:

p(dans)+p(en) = 3/10

I our new model is again the most uniform:

p(dans)=3/20; p(en)=3/20; p(à)=7/30;
p(au cours de)=7/30; p(pendant)=7/30;

I on more contraint: p(dans)+p(à) = 1/2 :
now the calculation is not that easy anymore ...
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The Maximum Entropy Principle

I with the last constraint we introduced two problems:

1. What exactly is meant by “most uniform”?
2. How to calculate the model according to those constraints?

I the maximum entropy method (ME) tries to answer both
these questions

I the ME-principle is simple:

model all that is known and assume nothing about that which
is unknown
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Definition of the Model

the model can be considered as a random process with the
following properties:

I produces an output value y, which is a member of a finite
setY
(in the previous example y was one word of the set dans, en,
à, au cours de, pendant)

I the model is influenced by some contextual information x, a
meber of a finite set X
(the english word in in the previous example)

I the model is the conditional probability that, given a context
x, the process will output y
we will notate it as p(y | x), which is a member of the set of
all conditional probability distributions P
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Training Data

I a large number of samples (x1, y1), (x2, y2), ..., (xN , yN) are
taken e.g. from an expert translator

I we can create the empirical probability distribution p̃ of the
training data:

p̃(x , y) =
1

N
x nmber of times that (x,y) occurs
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Feature Function

For each constraint we know, we create a so called feature
function:

I For instance, if in the training data April is the word following
in, the translation of in is en in 90%

I we express the feature in a indicator function:

f (x , y) =

{
1 if x = en and April follows in
0 otherwise

I so we can calculate the expected value of that feature:

p̃(f ) =
∑
x ,y

p̃(x , y)f (x , y)
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Constraint Equation

I also our model p(y | x) should correspond to that feature
function:

p(f ) =
∑
x ,y

p̃(x)p(y | x)f (x , y)

p̃(x) ... empirical distribution of x in the training data

I expected value p(f) should be the same as in the training data:

p(f ) = p̃(f )

I which leads to the constraint equation:∑
x ,y

p̃(x)p(y | x)f (x , y) =
∑
x ,y

p̃(x , y)f (x , y)
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Possible Models

I with the given feature functions fi , we can define a subset C
out of all possible probability functions P, where our model p
should be:

I

C ≡ {p ∈ P | p(fi ) = p̃(fi ) for i ∈ {1, 2, ..., n}}

I among the models p ∈ C the ME-philosophy dictates that we
select the most uniform distribution - but what does
“uniform” mean ?
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Information Entropy

I consider a discrete probability distribution among m exclusive
propositions

I most informative distribution would occur, when one
propositions is true - information entropy would be zero

I least informative distributionis, when there is no reason to
favor any - the only reasonable probability distribution would
be uniform - thus the entropy would be maximum (log m)

I the conditional entropy is defined as:

H(p) = −
∑
x ,y

p̃(x , y)p(y | x)logp(y | x)
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Maximum Entropy Principle

I the information entropy can therefore be seen as a numerical
measure which describes how uninformative a particular
probability distribution is

I so to select our model, we choose the model p∗ ∈ C with
maximum entropy H(p):

p∗ = arg max
p∈C

H(p)
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Lagrange Multipliers

Solving the ME-principle introduces a problem of constrained
optimization and therefore uses the method of Lagrange
multipliers:

I find

p∗ = arg max
p∈C

{
−

∑
x ,y

p̃(x , y)p(y | x)logp(y | x)

}
I for each feature fi (= a constraint) we introduce a parameter

λi (the Lagrange multiplier)
I so we can calculate a maximum:

pλ(y | x) =
1

Zλ(x)
exp(

∑
i

λi fi )
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Lagrange Multipliers

I where Zλ(x) is a normalizing constant, which can be
calculated with the constraint that:∑

y

pλ(y | x) = 1

I so we come to the so called Zustandssumme:

Zλ(x) =
∑
y

exp(
∑

i

λi fi )
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Calculating the Lagrange Multipliers

I the values of the Lagrange multipliers λi can be calculated
with the following constraint:

p(f ) = − ∂

∂λk
log Zλ(x)

I these m simultaneous equations do not generally possess a
closed form solution, and are usually solved by numerical
methods - e.g. with the iterative scaling algorithm
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Maximum Likelihood

I Maximum Likelihood-Ratio requires assumptions about the
distribution of a model:

I you assume a null-hypothesis H0

I create a likelihood-ratio to test H0

I the likelihood approach is most useful when one has lot’s of
data, but no other prior information (= constraints) about the
process
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Maximum Likelihood vs. Maximum Entropy

I Maximum-Entropy inference encodes prior information as
constraints on the set of possible models and estimates the
parameters that make the fewest additional assumptions

I the ME approach is most useful when one has relevant prior
information but no appreciable noise in the data

I Maximum Likelihood and Maximum Entropy represent
opposite extremes of reasoning, each appropriate to a distinct
class of problems.
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Motivation

In this section a method for automatically selecting features to be
included in a ME-model is propsed:

I we begin by specifying a very large collection F of candidate
features

I only a subset S of F will be included in our model - the active
features

I S should capture as much information about the random
process as possible
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How to find the Active Features

An incremental approach is used to find the features S :

I each step, one additional features f is added to S and thus is
an additional constraint - so the number of possible models
decrease

I the choice of which feature to add is determined by the
training data

I “adding” a feature means, that the set of allowable models all
satisfy the equation p̃(f ) = p(f )
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Formal Description

I every stage of the incremental algorithm is characterized by a
set of active features S, these determine a space of models
C (S):

C (S) ≡ {p ∈ P | p(f ) = p̃(f ) for all f ∈ S}

I optimal model in this space:

pS ≡ arg max
p∈C(S)

H(p)
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Formal Description

I adding a new feature f̂ to S , we get a new set of active
features S ∪ f̂ - so determines a new set of models :

C (S ∪ f̂ ) ≡
{

p ∈ P | p(f ) = p̃(f ) for all f ∈ S ∪ f̂
}

I now the optimal model is:

pS∪f̂ ≡ arg max
p∈C(S∪f̂ )

H(p)
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Which new Feature

I to decide which new feature f̂ we should add, we calculate the
log-likelihood ratio with the training data:

∆L(S , f̂ ) ≡ L(pS∪f̂ )− L(pS)

I at each step our goal is to select the feature f̂ which
maximizes the gain ∆L(S , f̂ ) - thus produces the greatest
increase in likelihood of the training sample
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The Algorithm

Input: collection F of candidate features; empirical distribution p̃(x , y)
Output: set S of active features; model pS incorporating these features

1. start with S = 0, thus pS is uniform

2. do for each candidate feature f ∈ F

I compute model pS∪f̂ as descriped in section 2
I compute the gain in the log-likelihood

3. select feature f̂ with maximal gain ∆L(S , f̂ )

4. check termination condition: if f̂ leads to an increase in likelihood

5. adjoin f̂ to S and compute pS

6. go to step 2
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Performance Problem

I problem of the algorithm:
for each candidate feature f we must compute the according
ME-model, which is computationally costly (see step 2)

I solution:
we calculate an approximation of ∆L(S , f ), which will be
called v ∆L(S , f )
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Approximate Gains

I model pS has a set of parameters λ
model pS∪f has an additional new parameter α, corresponding
to f

I problem: when new parameter α is added, all parameters λ
must be recalculated

I solution: make the approximation, that the addition of a
feature f affects only α - so it results in a simple
one-dimensional optimization problem
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Approximate Gains

I best model containing features S ∪ f has the form:

pα
S ,f =

1

Zα(x)
ps(y | x)eαf (x ,y)

I the approximate gain of parameter f :

GS ,f (α) = L(pα
S ,f )− L(pS)

= −
∑
x

p̃(x)logZα(x) + αp̃(f )
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Approximated Likelihood

I so the approximated likelihood-ratio is:

v ∆L(S , f ) = max
α

GS ,f (α)

I and the optimal model:

v pS∪f = arg max
pα

S,f

GS ,f (α)

I this one-dimensional optimization problem can be solved by
any popular line-search technique, such as Newton’s method
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French-to-English Example

I a automatic French-to-English machine translation system is
given as an example

I several applications of maximum entropy modeling will be
discussed, within Candide - a system developed at IBM
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Statistical Translation

First a short review of “traditional” statistical translation:

I translation from an French sentence F to an most likely
English sentence Ê :

Ê = arg max
E

p(E | F )

= arg max
E

p(F | E )p(E ) (Bayes’ theorem)

I p(E ) ... language model
p(F | E ) ... translation model
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Translation Model

I for the translation model p(F | E ) we get an alignment A
between the French and English words:

I so p(F | E ) can be expressed as the sum over all possible
alignments A between E and F, of the probability of F and A
given E:

p(F | E ) =
∑
A

p(F ,A | E )
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Viterbi Alignment

I for computational reasons we make the assumption, that there
exists only one extremely probable alignment Â, the Viterbi
Alignment, for which:

p(F | E ) ≈ p(F , Â | E )

I the basic translation model is given by:

p(F ,A | E ) =

|E |∏
i=1

p(n(ei ) | ei )

|F |∏
j=1

p(yj | eaj)d(A | E ,F )

p(n(ei ) | ei ) ... e generates n French words
d(A | E ,F ) ... order of French words
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Training

I An EM-algorithm can be used to estimate the parameters of
this basic translation model, so that it maximizes some
bilingual corpus (here from the Canadian Parliament).

I probabilities for the translation of the English word in:
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Context

I the previous model has one major shortcome: it does not take
the English context into account

I therefore a maximum entropy model pe(y | x) for each
English word e is used

I pe(y | x) represents the probability that an translator would
choose y as the French translation of e, given the surrounding
English context x
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Features

I now, in our example of the translation of in, x contains the six
words surrounding in

I so we can define some candidate features:
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Feature Templates

Because the set of possible features is very big, the authors
restricted them to the following five feature templates:

where ♦ is a French and � is an English word
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Automatic Feature Selection
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Translation Model

I the ME word translation model has to be incorporated into
the translation model p(F | E )

I this means the context-independet model p(y | x) has to be
replaced with pe(y | x):

p(F ,A | E ) =

|E |∏
i=1

p(n(ei ) | ei )

|F |∏
j=1

peaj (yj | xaj)d(A | E ,F )

where xaj is the context of the English word eaj

Georg Holzmann Maximum Entropy and Language Processing



Introduction
Maximum Entropy Modeling

Feature Selection
Translation Example

Review of Statistical Translation
Context-Dependent Word Models
Segmentation
Word Reordering

Translation Model

I the ME word translation model has to be incorporated into
the translation model p(F | E )

I this means the context-independet model p(y | x) has to be
replaced with pe(y | x):

p(F ,A | E ) =

|E |∏
i=1

p(n(ei ) | ei )

|F |∏
j=1

peaj (yj | xaj)d(A | E ,F )

where xaj is the context of the English word eaj

Georg Holzmann Maximum Entropy and Language Processing



Introduction
Maximum Entropy Modeling

Feature Selection
Translation Example

Review of Statistical Translation
Context-Dependent Word Models
Segmentation
Word Reordering

Segmentation

I since processing time is exponential in the length of the input
sentence, the French sentences have to be splitted into
smaller parts

I task is to find a safe position at which to split

I in our case, a safe segmentation is dependent on the Viterbi
alignment Â
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Georg Holzmann Maximum Entropy and Language Processing



Introduction
Maximum Entropy Modeling

Feature Selection
Translation Example

Review of Statistical Translation
Context-Dependent Word Models
Segmentation
Word Reordering

Save Segmentation

I a position of a safe segmentation is called a rift, e.g.:

I whereas the following would be a unsafe segmentation:

because a word in the translated sentence is aligned to words
in two different segments of the input sentence
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Segmentation Algorithm

I now a ME-model assigns to each location in the French
sentence a score p(rift | x)

I then a dynamic programming algorithm selects the optimal
splitting of the sentence, so that no segment contains more
than 10 words

I these segments are not logically coherent, but can be
translated sequentially from left to right
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System’s Segmentation

An example of the system’s segmentation:
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Word Reordering

I the English word order is often very different from the French
one

I input French sentences are shuffled in a preprocessing stage
into a order more closely to the English word order
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NOUN de NOUN

French phrases which have the NOUN de NOUN form are
sometimes changed in the English translation:
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Maximum Entropy Model

I ME-model decides, given a French NOUN de NOUN phrase,
if the nouns should be interchanged in the English translation

I y=no-interchange, if the English translation is a word-for-word
translation, otherwise y=interchange

I candidate features are taken from a template (next slide)
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Feature Template

I �1 and �2 are the French words, ♦ means interchange or
no-interchange:

I e.g. temlate 1 features consider only the left noun:

f (x , y) =

{
1 if y=interchange and left NOUN=système
0 otherwise
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Maximum Entropy Model

I feture-selection algorithm is used to construct a ME-model

I here some examples, if p(interchange) > 0.5, the nouns are
interchanged:
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