Maximum Entropy and Language Processing

Georg Holzmann

7. Dezember 2006

Introduction

Maximum Entropy Modeling

Training Data

Statistics, Features and Constraints

Entropy

Parametric Form

Relation to Maximum Likelihood

Feature Selection

Basic Feature Selection

Performance Boost

Translation Example

Review of Statistical Translation

Context-Dependent Word Models

Segmentation

Word Reordering

Let's introduce the concept of maximum entropy through a simple example:

- want to model a proper French translation of the English word in
- we collect a lot of examples from expert translators (feature selection)
- and then try to construct a model of this process (model selection)

Let's introduce the concept of maximum entropy through a simple example:

- want to model a proper French translation of the English word in
- we collect a lot of examples from expert translators (feature selection)
- and then try to construct a model of this process (model selection)

Let's introduce the concept of maximum entropy through a simple example:

- want to model a proper French translation of the English word in
- we collect a lot of examples from expert translators (feature selection)
- and then try to construct a model of this process (model selection)

first observation: expert tanslator always chooses among these five French phrases:

dans, en, à, au cours de, pendant

- so we can define the first constraint on our model p:
- ▶ with only this knowledge, the most appealing model is the uniform model:

$$p(dans)=1/5$$
; $p(en)=1/5$; $p(a)=1/5$; $p(au\ cours\ de)=1/5$; $p(pendant)=1/5$

first observation: expert tanslator always chooses among these five French phrases:

dans, en, à, au cours de, pendant

- ▶ so we can define the first constraint on our model p: $p(dans)+p(en)+p(a)+p(au\ cours\ de)+p(pendant)=1$
- with only this knowledge, the most appealing model is the uniform model:

first observation: expert tanslator always chooses among these five French phrases:

dans, en, à, au cours de, pendant

▶ so we can define the first constraint on our model p:

$$p(dans)+p(en)+p(a)+p(au cours de)+p(pendant)=1$$

with only this knowledge, the most appealing model is the uniform model:

$$p(dans)=1/5$$
; $p(en)=1/5$; $p(a)=1/5$; $p(au cours de)=1/5$; $p(pendant)=1/5$;

one more observations: the translator chose either dans or en in 30% of the time:

$$p(dans)+p(en)=3/10$$

our new model is again the most uniform:

$$p(dans)=3/20$$
; $p(en)=3/20$; $p(a)=7/30$; $p(au cours de)=7/30$; $p(pendant)=7/30$;

on more contraint: p(dans)+p(à) = 1/2 : now the calculation is not that easy anymore ...

one more observations: the translator chose either dans or en in 30% of the time:

$$p(dans)+p(en) = 3/10$$

our new model is again the most uniform:

$$p(dans)=3/20$$
; $p(en)=3/20$; $p(a)=7/30$; $p(au cours de)=7/30$; $p(pendant)=7/30$;

on more contraint: p(dans)+p(à) = 1/2 : now the calculation is not that easy anymore ...

one more observations: the translator chose either dans or en in 30% of the time:

$$p(dans)+p(en) = 3/10$$

our new model is again the most uniform:

$$p(dans)=3/20$$
; $p(en)=3/20$; $p(a)=7/30$; $p(au cours de)=7/30$; $p(pendant)=7/30$;

▶ on more contraint: $p(dans)+p(\grave{a})=1/2$: now the calculation is not that easy anymore ...

- with the last constraint we introduced two problems:
 - 1. What exactly is meant by "most uniform"?
 - 2. How to calculate the model according to those constraints?
- ▶ the maximum entropy method (ME) tries to answer both these questions
- ► the ME-principle is simple:
 model all that is known and assume nothing about that which is unknown

- with the last constraint we introduced two problems:
 - 1. What exactly is meant by "most uniform"?
 - 2. How to calculate the model according to those constraints?
- ▶ the maximum entropy method (ME) tries to answer both these questions
- ► the ME-principle is simple:
 model all that is known and assume nothing about that which is unknown

- with the last constraint we introduced two problems:
 - 1. What exactly is meant by "most uniform"?
 - 2. How to calculate the model according to those constraints?
- ▶ the maximum entropy method (ME) tries to answer both these questions
- ► the ME-principle is simple:

 model all that is known and assume nothing about that which
 is unknown

- with the last constraint we introduced two problems:
 - 1. What exactly is meant by "most uniform"?
 - 2. How to calculate the model according to those constraints?
- ▶ the maximum entropy method (ME) tries to answer both these questions
- ► the ME-principle is simple:

 model all that is known and assume nothing about that which
 is unknown

- with the last constraint we introduced two problems:
 - 1. What exactly is meant by "most uniform"?
 - 2. How to calculate the model according to those constraints?
- ▶ the maximum entropy method (ME) tries to answer both these questions
- ► the ME-principle is simple:

 model all that is known and assume nothing about that which
 is unknown

Definition of the Model

the model can be considered as a random process with the following properties:

- produces an output value y, which is a member of a finite set Y
 - (in the previous example y was one word of the set dans, en, à, au cours de, pendant)
- the model is influenced by some contextual information x, a meber of a finite set X (the english word in in the previous example)
- the model is the conditional probability that, given a context x, the process will output y we will notate it as $p(y \mid x)$, which is a member of the set of all conditional probability distributions P

Definition of the Model

the model can be considered as a random process with the following properties:

- produces an output value y, which is a member of a finite set Y
 - (in the previous example y was one word of the set dans, en, à, au cours de, pendant)
- the model is influenced by some contextual information x, a meber of a finite set X (the english word in in the previous example)
- ▶ the model is the conditional probability that, given a context x, the process will output y we will notate it as $p(y \mid x)$, which is a member of the set of all conditional probability distributions P

Definition of the Model

the model can be considered as a random process with the following properties:

- produces an output value y, which is a member of a finite set Y
 - (in the previous example y was one word of the set dans, en, à, au cours de, pendant)
- the model is influenced by some contextual information x, a meber of a finite set X (the english word in in the previous example)
- ▶ the model is the conditional probability that, given a context x, the process will output y we will notate it as $p(y \mid x)$, which is a member of the set of all conditional probability distributions P

Training Data

- ▶ a large number of samples $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$ are taken e.g. from an expert translator
- we can create the empirical probability distribution \tilde{p} of the training data:

$$\tilde{p}(x,y) = \frac{1}{N} \times \text{nmber of times that } (x,y) \text{ occurs}$$

Training Data

- ▶ a large number of samples $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$ are taken e.g. from an expert translator
- we can create the empirical probability distribution \tilde{p} of the training data:

$$\tilde{p}(x,y) = \frac{1}{N} \times nmber \ of \ times \ that \ (x,y) \ occurs$$

Feature Function

For each constraint we know, we create a so called feature function:

- ► For instance, if in the training data *April* is the word following *in*, the translation of *in* is *en* in 90%
- we express the feature in a indicator function:

$$f(x,y) = \begin{cases} 1 & \text{if } x = \text{en and April follows in} \\ 0 & \text{otherwise} \end{cases}$$

▶ so we can calculate the expected value of that feature:

$$\tilde{p}(f) = \sum_{x,y} \tilde{p}(x,y) f(x,y)$$

Feature Function

For each constraint we know, we create a so called feature function:

- ► For instance, if in the training data *April* is the word following *in*, the translation of *in* is *en* in 90%
- we express the feature in a indicator function:

$$f(x,y) = \begin{cases} 1 & \text{if } x = \text{en and April follows in} \\ 0 & \text{otherwise} \end{cases}$$

▶ so we can calculate the expected value of that feature:

$$\tilde{p}(f) = \sum_{x,y} \tilde{p}(x,y) f(x,y)$$

Feature Function

For each constraint we know, we create a so called feature function:

- ► For instance, if in the training data *April* is the word following *in*, the translation of *in* is *en* in 90%
- we express the feature in a indicator function:

$$f(x,y) = \begin{cases} 1 & \text{if } x = \text{en and April follows in} \\ 0 & \text{otherwise} \end{cases}$$

so we can calculate the expected value of that feature:

$$\tilde{p}(f) = \sum_{x,y} \tilde{p}(x,y) f(x,y)$$

Constraint Equation

▶ also our model $p(y \mid x)$ should correspond to that feature function:

$$p(f) = \sum_{x,y} \tilde{p}(x)p(y \mid x)f(x,y)$$

 $\tilde{p}(x)$... empirical distribution of x in the training data

expected value p(f) should be the same as in the training data:

$$p(f) = \tilde{p}(f)$$

which leads to the constraint equation:

$$\sum_{x,y} \tilde{p}(x)p(y \mid x)f(x,y) = \sum_{x,y} \tilde{p}(x,y)f(x,y)$$

Constraint Equation

▶ also our model $p(y \mid x)$ should correspond to that feature function:

$$p(f) = \sum_{x,y} \tilde{p}(x)p(y \mid x)f(x,y)$$

 $\tilde{p}(x)$... empirical distribution of x in the training data

expected value p(f) should be the same as in the training data:

$$p(f) = \tilde{p}(f)$$

which leads to the constraint equation:

$$\sum_{x,y} \tilde{p}(x)p(y\mid x)f(x,y) = \sum_{x,y} \tilde{p}(x,y)f(x,y)$$

Constraint Equation

▶ also our model $p(y \mid x)$ should correspond to that feature function:

$$p(f) = \sum_{x,y} \tilde{p}(x)p(y \mid x)f(x,y)$$

 $\tilde{p}(x)$... empirical distribution of x in the training data

expected value p(f) should be the same as in the training data:

$$p(f) = \tilde{p}(f)$$

which leads to the constraint equation:

$$\sum_{x,y} \tilde{p}(x)p(y\mid x)f(x,y) = \sum_{x,y} \tilde{p}(x,y)f(x,y)$$

Possible Models

▶ with the given feature functions f_i, we can define a subset C out of all possible probability functions P, where our model p should be:

$$C \equiv \{ p \in P \mid p(f_i) = \tilde{p}(f_i) \text{ for } i \in \{1, 2, ..., n\} \}$$

■ among the models p ∈ C the ME-philosophy dictates that we select the most uniform distribution - but what does "uniform" mean?

Possible Models

▶ with the given feature functions f_i, we can define a subset C out of all possible probability functions P, where our model p should be:

>

$$C \equiv \{ p \in P \mid p(f_i) = \tilde{p}(f_i) \text{ for } i \in \{1, 2, ..., n\} \}$$

▶ among the models $p \in C$ the ME-philosophy dictates that we select the most uniform distribution - but what does "uniform" mean ?

Possible Models

▶ with the given feature functions f_i, we can define a subset C out of all possible probability functions P, where our model p should be:

•

$$C \equiv \{ p \in P \mid p(f_i) = \tilde{p}(f_i) \text{ for } i \in \{1, 2, ..., n\} \}$$

■ among the models p ∈ C the ME-philosophy dictates that we select the most uniform distribution - but what does "uniform" mean?

- consider a discrete probability distribution among m exclusive propositions
 - most informative distribution would occur, when one propositions is true - information entropy would be zero
 - least informative distributionis, when there is no reason to favor any - the only reasonable probability distribution would be uniform - thus the entropy would be maximum (log m)
- ▶ the conditional entropy is defined as:

$$H(p) = -\sum_{x,y} \tilde{p}(x,y)p(y \mid x)logp(y \mid x)$$

- consider a discrete probability distribution among m exclusive propositions
 - most informative distribution would occur, when one propositions is true - information entropy would be zero
 - least informative distributionis, when there is no reason to favor any - the only reasonable probability distribution would be uniform - thus the entropy would be maximum (log m)
- ▶ the conditional entropy is defined as:

$$H(p) = -\sum_{x,y} \tilde{p}(x,y)p(y \mid x)logp(y \mid x)$$

- consider a discrete probability distribution among m exclusive propositions
 - most informative distribution would occur, when one propositions is true - information entropy would be zero
 - ▶ least informative distributionis, when there is no reason to favor any the only reasonable probability distribution would be uniform thus the entropy would be maximum (log m)
- ▶ the conditional entropy is defined as:

$$H(p) = -\sum_{x,y} \tilde{p}(x,y)p(y \mid x)logp(y \mid x)$$

- consider a discrete probability distribution among m exclusive propositions
 - most informative distribution would occur, when one propositions is true - information entropy would be zero
 - least informative distributionis, when there is no reason to favor any - the only reasonable probability distribution would be uniform - thus the entropy would be maximum (log m)
- ▶ the conditional entropy is defined as:

$$H(p) = -\sum_{x,y} \tilde{p}(x,y)p(y \mid x)logp(y \mid x)$$

- ▶ the information entropy can therefore be seen as a numerical measure which describes how uninformative a particular probability distribution is
- ▶ so to select our model, we choose the model $p_* \in C$ with maximum entropy H(p):

$$p_* = \arg\max_{p \in C} H(p)$$

- ► the information entropy can therefore be seen as a numerical measure which describes how uninformative a particular probability distribution is
- ▶ so to select our model, we choose the model $p_* \in C$ with maximum entropy H(p):

$$p_* = \arg\max_{p \in C} H(p)$$

Solving the ME-principle introduces a problem of constrained optimization and therefore uses the method of Lagrange multipliers:

▶ find

$$p_* = \arg \max_{p \in C} \left\{ -\sum_{x,y} \tilde{p}(x,y) p(y \mid x) log p(y \mid x) \right\}$$

- ▶ for each feature f_i (= a constraint) we introduce a parameter λ_i (the Lagrange multiplier)
- ▶ so we can calculate a maximum:

$$p_{\lambda}(y \mid x) = \frac{1}{Z_{\lambda}(x)} exp(\sum_{i} \lambda_{i} f_{i})$$

Solving the ME-principle introduces a problem of constrained optimization and therefore uses the method of Lagrange multipliers:

▶ find

$$p_* = \arg \max_{p \in C} \left\{ -\sum_{x,y} \tilde{p}(x,y) p(y \mid x) log p(y \mid x) \right\}$$

- ▶ for each feature f_i (= a constraint) we introduce a parameter λ_i (the Lagrange multiplier)
- ▶ so we can calculate a maximum:

$$p_{\lambda}(y \mid x) = \frac{1}{Z_{\lambda}(x)} exp(\sum_{i} \lambda_{i} f_{i})$$

Solving the ME-principle introduces a problem of constrained optimization and therefore uses the method of Lagrange multipliers:

find

$$p_* = \arg \max_{p \in C} \left\{ -\sum_{x,y} \tilde{p}(x,y) p(y \mid x) log p(y \mid x) \right\}$$

- ▶ for each feature f_i (= a constraint) we introduce a parameter λ_i (the Lagrange multiplier)
- so we can calculate a maximum:

$$p_{\lambda}(y \mid x) = \frac{1}{Z_{\lambda}(x)} exp(\sum_{i} \lambda_{i} f_{i})$$

• where $Z_{\lambda}(x)$ is a normalizing constant, which can be calculated with the constraint that:

$$\sum_{y} p_{\lambda}(y \mid x) = 1$$

▶ so we come to the so called *Zustandssumme*:

$$Z_{\lambda}(x) = \sum_{y} exp(\sum_{i} \lambda_{i} f_{i})$$

• where $Z_{\lambda}(x)$ is a normalizing constant, which can be calculated with the constraint that:

$$\sum_{y} p_{\lambda}(y \mid x) = 1$$

▶ so we come to the so called *Zustandssumme*:

$$Z_{\lambda}(x) = \sum_{y} exp(\sum_{i} \lambda_{i} f_{i})$$

Calculating the Lagrange Multipliers

▶ the values of the Lagrange multipliers λ_i can be calculated with the following constraint:

$$p(f) = -\frac{\partial}{\partial \lambda_k} \log Z_\lambda(x)$$

▶ these m simultaneous equations do not generally possess a closed form solution, and are usually solved by numerical methods - e.g. with the *iterative scaling algorithm*

Calculating the Lagrange Multipliers

▶ the values of the Lagrange multipliers λ_i can be calculated with the following constraint:

$$p(f) = -\frac{\partial}{\partial \lambda_k} \log Z_\lambda(x)$$

▶ these m simultaneous equations do not generally possess a closed form solution, and are usually solved by numerical methods - e.g. with the *iterative scaling algorithm*

- Maximum Likelihood-Ratio requires assumptions about the distribution of a model:
 - you assume a null-hypothesis H_0
 - ► create a likelihood-ratio to test *H*₀
- the likelihood approach is most useful when one has lot's of data, but no other prior information (= constraints) about the process

- Maximum Likelihood-Ratio requires assumptions about the distribution of a model:
 - ▶ you assume a null-hypothesis H₀
 - \triangleright create a likelihood-ratio to test H_0
- the likelihood approach is most useful when one has lot's of data, but no other prior information (= constraints) about the process

- Maximum Likelihood-Ratio requires assumptions about the distribution of a model:
 - ▶ you assume a null-hypothesis H₀
 - create a likelihood-ratio to test H₀
- the likelihood approach is most useful when one has lot's of data, but no other prior information (= constraints) about the process

- Maximum Likelihood-Ratio requires assumptions about the distribution of a model:
 - ▶ you assume a null-hypothesis H₀
 - create a likelihood-ratio to test H₀
- the likelihood approach is most useful when one has lot's of data, but no other prior information (= constraints) about the process

Maximum Likelihood vs. Maximum Entropy

- ► Maximum-Entropy inference encodes prior information as constraints on the set of possible models and estimates the parameters that make the fewest additional assumptions
- the ME approach is most useful when one has relevant prior information but no appreciable noise in the data
- Maximum Likelihood and Maximum Entropy represent opposite extremes of reasoning, each appropriate to a distinct class of problems.

Maximum Likelihood vs. Maximum Entropy

- ▶ Maximum-Entropy inference encodes prior information as constraints on the set of possible models and estimates the parameters that make the fewest additional assumptions
- ▶ the ME approach is most useful when one has relevant prior information but no appreciable noise in the data
- Maximum Likelihood and Maximum Entropy represent opposite extremes of reasoning, each appropriate to a distinct class of problems.

Maximum Likelihood vs. Maximum Entropy

- ▶ Maximum-Entropy inference encodes prior information as constraints on the set of possible models and estimates the parameters that make the fewest additional assumptions
- ▶ the ME approach is most useful when one has relevant prior information but no appreciable noise in the data
- Maximum Likelihood and Maximum Entropy represent opposite extremes of reasoning, each appropriate to a distinct class of problems.

- we begin by specifying a very large collection F of candidate features
- ▶ only a subset S of F will be included in our model the active features
- ► S should capture as much information about the random process as possible

- we begin by specifying a very large collection F of candidate features
- ▶ only a subset S of F will be included in our model the active features
- ► S should capture as much information about the random process as possible

- we begin by specifying a very large collection F of candidate features
- ▶ only a subset S of F will be included in our model the active features
- ► S should capture as much information about the random process as possible

- we begin by specifying a very large collection F of candidate features
- only a subset S of F will be included in our model the active features
- ► S should capture as much information about the random process as possible

- each step, one additional features f is added to S and thus is an additional constraint - so the number of possible models decrease
- the choice of which feature to add is determined by the training data
- "adding" a feature means, that the set of allowable models all satisfy the equation $\tilde{p}(f) = p(f)$

- each step, one additional features f is added to S and thus is an additional constraint - so the number of possible models decrease
- the choice of which feature to add is determined by the training data
- "adding" a feature means, that the set of allowable models all satisfy the equation $\tilde{p}(f) = p(f)$

- each step, one additional features f is added to S and thus is an additional constraint - so the number of possible models decrease
- the choice of which feature to add is determined by the training data
- "adding" a feature means, that the set of allowable models all satisfy the equation $\tilde{p}(f) = p(f)$

- each step, one additional features f is added to S and thus is an additional constraint - so the number of possible models decrease
- the choice of which feature to add is determined by the training data
- "adding" a feature means, that the set of allowable models all satisfy the equation $\tilde{p}(f) = p(f)$

every stage of the incremental algorithm is characterized by a set of active features S, these determine a space of models C(S):

$$C(S) \equiv \{ p \in P \mid p(f) = \tilde{p}(f) \text{ for all } f \in S \}$$

optimal model in this space:

$$p_S \equiv \arg \max_{p \in C(S)} H(p)$$

every stage of the incremental algorithm is characterized by a set of active features S, these determine a space of models C(S):

$$C(S) \equiv \{ p \in P \mid p(f) = \tilde{p}(f) \text{ for all } f \in S \}$$

optimal model in this space:

$$p_S \equiv \arg\max_{p \in C(S)} H(p)$$

▶ adding a new feature \hat{f} to S, we get a new set of active features $S \cup \hat{f}$ - so determines a new set of models :

$$C(S \cup \hat{f}) \equiv \left\{ p \in P \mid p(f) = \tilde{p}(f) \text{ for all } f \in S \cup \hat{f} \right\}$$

now the optimal model is:

$$p_{S \cup \hat{f}} \equiv \arg \max_{p \in C(S \cup \hat{f})} H(p)$$

▶ adding a new feature \hat{f} to S, we get a new set of active features $S \cup \hat{f}$ - so determines a new set of models :

$$C(S \cup \hat{f}) \equiv \left\{ p \in P \mid p(f) = \tilde{p}(f) \text{ for all } f \in S \cup \hat{f} \right\}$$

now the optimal model is:

$$p_{S \cup \hat{f}} \equiv \arg \max_{p \in C(S \cup \hat{f})} H(p)$$

Which new Feature

▶ to decide which new feature \hat{f} we should add, we calculate the log-likelihood ratio with the training data:

$$\Delta L(S,\hat{f}) \equiv L(p_{S\cup\hat{f}}) - L(p_S)$$

▶ at each step our goal is to select the feature \hat{f} which maximizes the gain $\Delta L(S, \hat{f})$ - thus produces the greatest increase in likelihood of the training sample

Which new Feature

▶ to decide which new feature \hat{f} we should add, we calculate the log-likelihood ratio with the training data:

$$\Delta L(S,\hat{f}) \equiv L(p_{S\cup\hat{f}}) - L(p_S)$$

▶ at each step our goal is to select the feature \hat{f} which maximizes the gain $\Delta L(S, \hat{f})$ - thus produces the greatest increase in likelihood of the training sample

- 1. start with S = 0, thus p_S is uniform
- 2. do for each candidate feature $f \in F$
 - \triangleright compute model $p_{S \cup \hat{f}}$ as descriped in section 2
 - compute the gain in the log-likelihood
- 3. select feature \hat{f} with maximal gain $\Delta L(S, \hat{f})$
- 4. check termination condition: if \hat{f} leads to an increase in likelihood
 - 5. adjoin \hat{f} to S and compute p_S
- 6. go to step 2

- 1. start with S = 0, thus p_S is uniform
- 2. do for each candidate feature $f \in F$
 - compute model $p_{S \cup \hat{t}}$ as descriped in section 2
 - compute the gain in the log-likelihood
- 3. select feature \hat{f} with maximal gain $\Delta L(S, \hat{f})$
- 4. check termination condition: if \hat{f} leads to an increase in likelihood
- 5. adjoin \hat{f} to S and compute p_S
- 6. go to step 2

- 1. start with S = 0, thus p_S is uniform
- 2. do for each candidate feature $f \in F$
 - compute model $p_{S \cup \hat{f}}$ as descriped in section 2
 - compute the gain in the log-likelihood
- 3. select feature \hat{f} with maximal gain $\Delta L(S, \hat{f})$
- 4. check termination condition: if \hat{f} leads to an increase in likelihood
 - 5. adjoin \hat{f} to S and compute p_S
- 6. go to step 2

- 1. start with S = 0, thus p_S is uniform
- 2. do for each candidate feature $f \in F$
 - compute model $p_{S \cup \hat{f}}$ as descriped in section 2
 - compute the gain in the log-likelihood
- 3. select feature \hat{f} with maximal gain $\Delta L(S, \hat{f})$
- 4. check termination condition: if \hat{f} leads to an increase in likelihood
- 5. adjoin \hat{f} to S and compute p_S
- 6. go to step 2

- 1. start with S = 0, thus p_S is uniform
- 2. do for each candidate feature $f \in F$
 - compute model $p_{S \cup \hat{f}}$ as descriped in section 2
 - compute the gain in the log-likelihood
- 3. select feature \hat{f} with maximal gain $\Delta L(S, \hat{f})$
- 4. check termination condition: if \hat{f} leads to an increase in likelihood
- 5. adjoin \hat{f} to S and compute p_S
- 6. go to step 2

- 1. start with S = 0, thus p_S is uniform
- 2. do for each candidate feature $f \in F$
 - compute model $p_{S \cup \hat{f}}$ as descriped in section 2
 - compute the gain in the log-likelihood
- 3. select feature \hat{f} with maximal gain $\Delta L(S, \hat{f})$
- 4. check termination condition: if \hat{f} leads to an increase in likelihood
- 5. adjoin \hat{f} to S and compute p_S
- 6. go to step 2

- 1. start with S = 0, thus p_S is uniform
- 2. do for each candidate feature $f \in F$
 - compute model $p_{S \cup \hat{f}}$ as descriped in section 2
 - compute the gain in the log-likelihood
- 3. select feature \hat{f} with maximal gain $\Delta L(S, \hat{f})$
- 4. check termination condition: if \hat{f} leads to an increase in likelihood
- 5. adjoin \hat{f} to S and compute p_S
- 6. go to step 2

Performance Problem

- problem of the algorithm: for each candidate feature f we must compute the according ME-model, which is computationally costly (see step 2)
- ▶ solution: we calculate an approximation of $\Delta L(S, f)$, which will be called $\sim \Delta L(S, f)$

Performance Problem

- problem of the algorithm: for each candidate feature f we must compute the according ME-model, which is computationally costly (see step 2)
- ▶ solution: we calculate an approximation of $\Delta L(S, f)$, which will be called $\backsim \Delta L(S, f)$

- ▶ model p_S has a set of parameters λ model $p_{S \cup f}$ has an additional new parameter α , corresponding to f
- ightharpoonup problem: when new parameter lpha is added, all parameters λ must be recalculated
- solution: make the approximation, that the addition of a feature f affects only α - so it results in a simple one-dimensional optimization problem

- ▶ model p_S has a set of parameters λ model $p_{S \cup f}$ has an additional new parameter α , corresponding to f
- ightharpoonup problem: when new parameter lpha is added, all parameters λ must be recalculated
- solution: make the approximation, that the addition of a feature f affects only α - so it results in a simple one-dimensional optimization problem

- ▶ model p_S has a set of parameters λ model $p_{S \cup f}$ has an additional new parameter α , corresponding to f
- ightharpoonup problem: when new parameter lpha is added, all parameters λ must be recalculated
- solution: make the approximation, that the addition of a feature f affects only α - so it results in a simple one-dimensional optimization problem

▶ best model containing features $S \cup f$ has the form:

$$p_{S,f}^{\alpha} = \frac{1}{Z_{\alpha}(x)} p_{s}(y \mid x) e^{\alpha f(x,y)}$$

 \triangleright the approximate gain of parameter f:

$$G_{S,f}(\alpha) = L(p_{S,f}^{\alpha}) - L(p_S)$$
$$= -\sum_{x} \tilde{p}(x) log Z_{\alpha}(x) + \alpha \tilde{p}(f)$$

▶ best model containing features $S \cup f$ has the form:

$$p_{S,f}^{\alpha} = \frac{1}{Z_{\alpha}(x)} p_{s}(y \mid x) e^{\alpha f(x,y)}$$

 \blacktriangleright the approximate gain of parameter f:

$$G_{S,f}(\alpha) = L(p_{S,f}^{\alpha}) - L(p_S)$$

$$= -\sum_{x} \tilde{p}(x) log Z_{\alpha}(x) + \alpha \tilde{p}(f)$$

Approximated Likelihood

▶ so the approximated likelihood-ratio is:

$$\backsim \Delta L(S, f) = \max_{\alpha} G_{S, f}(\alpha)$$

▶ and the optimal model:

$$\backsim p_{S \cup f} = rg \max_{p_{S,f}^{lpha}} G_{S,f}(lpha)$$

this one-dimensional optimization problem can be solved by any popular line-search technique, such as Newton's method

Approximated Likelihood

▶ so the approximated likelihood-ratio is:

$$\backsim \Delta L(S, f) = \max_{\alpha} G_{S, f}(\alpha)$$

and the optimal model:

$$\backsim p_{S \cup f} = \arg \max_{p_{S,f}^{\alpha}} G_{S,f}(\alpha)$$

this one-dimensional optimization problem can be solved by any popular line-search technique, such as Newton's method

Approximated Likelihood

▶ so the approximated likelihood-ratio is:

$$\backsim \Delta L(S, f) = \max_{\alpha} G_{S, f}(\alpha)$$

and the optimal model:

$$\backsim p_{S \cup f} = \arg \max_{p_{S,f}^{\alpha}} G_{S,f}(\alpha)$$

this one-dimensional optimization problem can be solved by any popular line-search technique, such as Newton's method

French-to-English Example

- a automatic French-to-English machine translation system is given as an example
- several applications of maximum entropy modeling will be discussed, within Candide - a system developed at IBM

French-to-English Example

- a automatic French-to-English machine translation system is given as an example
- several applications of maximum entropy modeling will be discussed, within Candide - a system developed at IBM

Statistical Translation

First a short review of "traditional" statistical translation:

▶ translation from an French sentence F to an most likely English sentence \hat{E} :

$$\hat{E} = \arg \max_{E} p(E \mid F)$$

$$= \arg \max_{E} p(F \mid E)p(E) \text{ (Bayes' theorem)}$$

▶ p(E) ... language model $p(F \mid E)$... translation model

Statistical Translation

First a short review of "traditional" statistical translation:

▶ translation from an French sentence F to an most likely English sentence \hat{E} :

$$\hat{E} = \underset{E}{\operatorname{arg max}} p(E \mid F)$$

$$= \underset{E}{\operatorname{arg max}} p(F \mid E)p(E) \text{ (Bayes' theorem)}$$

▶ p(E) ... language model $p(F \mid E)$... translation model

Translation Model

▶ for the translation model $p(F \mid E)$ we get an alignment A between the French and English words:

Figure 4 Alignment of a French-English sentence pair. The subscripts give the position of each word in its sentence. Here $a_1 = 1$, $a_2 = 2$, $a_3 = a_4 = 3$, $a_5 = 4$, and $a_6 = 5$.

So p(F | E) can be expressed as the sum over all possible alignments A between E and F, of the probability of F and A given E:

$$p(F \mid E) = \sum_{A} p(F, A \mid E)$$

Translation Model

▶ for the translation model $p(F \mid E)$ we get an alignment A between the French and English words:

Figure 4 Alignment of a French-English sentence pair. The subscripts give the position of each word in its sentence. Here $a_1 = 1$, $a_2 = 2$, $a_3 = a_4 = 3$, $a_5 = 4$, and $a_6 = 5$.

So p(F | E) can be expressed as the sum over all possible alignments A between E and F, of the probability of F and A given E:

$$p(F \mid E) = \sum_{A} p(F, A \mid E)$$

Viterbi Alignment

• for computational reasons we make the assumption, that there exists only one extremely probable alignment \hat{A} , the *Viterbi Alignment*, for which:

$$p(F \mid E) \approx p(F, \hat{A} \mid E)$$

▶ the basic translation model is given by:

$$p(F, A \mid E) = \prod_{i=1}^{|E|} p(n(e_i) \mid e_i) \prod_{j=1}^{|F|} p(y_j \mid e_{aj}) d(A \mid E, F)$$

 $p(n(e_i) \mid e_i)$... e generates n French words $d(A \mid E, F)$... order of French words

Viterbi Alignment

• for computational reasons we make the assumption, that there exists only one extremely probable alignment \hat{A} , the *Viterbi Alignment*, for which:

$$p(F \mid E) \approx p(F, \hat{A} \mid E)$$

the basic translation model is given by:

$$p(F, A \mid E) = \prod_{i=1}^{|E|} p(n(e_i) \mid e_i) \prod_{j=1}^{|F|} p(y_j \mid e_{aj}) d(A \mid E, F)$$

 $p(n(e_i) \mid e_i)$... e generates n French words $d(A \mid E, F)$... order of French words

Training

- ▶ An EM-algorithm can be used to estimate the parameters of this basic translation model, so that it maximizes some bilingual corpus (here from the Canadian Parliament).
- probabilities for the translation of the English word in:

Translation	Probability		
dans	0.3004		
à	0.2275		
de	0.1428		
en	0.1361		
pour	0.0349		
(OTHER)	0.0290		
au cours de	0.0233		
	0.0154		
sur	0.0123		
par	0.0101		
pendant	0.0044		

Context

- ▶ the previous model has one major shortcome: it does not take the English context into account
- ▶ therefore a maximum entropy model $p_e(y \mid x)$ for each English word e is used
- ▶ $p_e(y \mid x)$ represents the probability that an translator would choose y as the French translation of e, given the surrounding English context x

Context

- the previous model has one major shortcome: it does not take the English context into account
- ▶ therefore a maximum entropy model $p_e(y \mid x)$ for each English word e is used
- ▶ $p_e(y \mid x)$ represents the probability that an translator would choose y as the French translation of e, given the surrounding English context x

Context

- the previous model has one major shortcome: it does not take the English context into account
- ▶ therefore a maximum entropy model $p_e(y \mid x)$ for each English word e is used
- ▶ $p_e(y \mid x)$ represents the probability that an translator would choose y as the French translation of e, given the surrounding English context x

Features

- ▶ now, in our example of the translation of in, x contains the six words surrounding in
- so we can define some candidate features:

$$f_1(x,y) = \begin{cases} 1 & \text{if } y = en \text{ and } April \in \boxed{\bullet} \\ 0 & \text{otherwise} \end{cases}$$

$$f_2(x,y) = \begin{cases} 1 & \text{if } y = pendant \text{ and } weeks \in \boxed{} \bullet \bullet \bullet \\ 0 & \text{otherwise} \end{cases}$$

Feature Templates

Because the set of possible features is very big, the authors restricted them to the following five feature templates:

Feature templates for word-translation modeling. $|\mathcal{V}_{\mathcal{E}}|$ is the size of the English vocabulary; $|\mathcal{V}_{\mathcal{F}}|$ the size of the French vocabulary.

Template	Number of Actual Features	f(x,y) = 1 if and only if								
1	$ \mathcal{V}_{\mathcal{F}} $	$y = \diamond$	9							
2	$ \mathcal{V}_{\mathcal{F}} \cdot \mathcal{V}_{\mathcal{E}} $	$y = \diamond$	and	□∈				•		
3	$ \mathcal{V}_{\mathcal{F}} \cdot \mathcal{V}_{\mathcal{E}} $	<i>y</i> = ◊	and	□∈			•			
4	$ \mathcal{V}_{\mathcal{F}} \cdot \mathcal{V}_{\mathcal{E}} $	$y = \diamond$	and	□∈	•	•	•			
5	$ \mathcal{V}_{\mathcal{F}} \cdot \mathcal{V}_{\mathcal{E}} $	$y = \diamond$	and	□∈				•	•	•

where \Diamond is a French and \square is an English word

Automatic Feature Selection

Maximum entropy model to predict French translation of in. Features shown here were the first features selected not from template 1. [verb marker] denotes a morphological marker inserted to indicate the presence of a verb as the next word.

	Feature $f(x, y)$	$\sim \Delta L(S, f)$	L(p)
y=à and Canada ∈		0.0415	-2.9674
$y=a$ and $House \in$	•	0.0361	-2.9281
$y=en$ and $the \in$		0.0221	-2.8944
$y=pour$ and $order \in$		0.0224	-2.8703
$y=dans$ and $speech \in$		0.0190	-2.8525
$y=dans$ and $area \in$		0.0153	-2.8377
y=de and increase ∈	•••	0.0151	-2.8209
$y=[verb\ marker]\ and\ my\in$	•	0.0141	-2.8034
$y=dans$ and $case \in$		0.0116	-2.7918
y=au cours de and year ∈		0.0104	-2.7792

Translation Model

- ▶ the ME word translation model has to be incorporated into the translation model $p(F \mid E)$
- ▶ this means the context-independet model $p(y \mid x)$ has to be replaced with $p_e(y \mid x)$:

$$p(F, A \mid E) = \prod_{i=1}^{|E|} p(n(e_i) \mid e_i) \prod_{j=1}^{|F|} p_{e_{aj}}(y_j \mid x_{aj}) d(A \mid E, F)$$

where x_{aj} is the context of the English word e_{aj}

Translation Model

- ▶ the ME word translation model has to be incorporated into the translation model $p(F \mid E)$
- ▶ this means the context-independet model p(y | x) has to be replaced with p_e(y | x):

$$p(F, A \mid E) = \prod_{i=1}^{|E|} p(n(e_i) \mid e_i) \prod_{j=1}^{|F|} p_{e_{aj}}(y_j \mid x_{aj}) d(A \mid E, F)$$

where x_{aj} is the context of the English word e_{aj}

Segmentation

- since processing time is exponential in the length of the input sentence, the French sentences have to be splitted into smaller parts
- task is to find a safe position at which to split
- \blacktriangleright in our case, a safe segmentation is dependent on the Viterbi alignment \hat{A}

Segmentation

- since processing time is exponential in the length of the input sentence, the French sentences have to be splitted into smaller parts
- task is to find a safe position at which to split
- \blacktriangleright in our case, a safe segmentation is dependent on the Viterbi alignment \hat{A}

Segmentation

- since processing time is exponential in the length of the input sentence, the French sentences have to be splitted into smaller parts
- task is to find a safe position at which to split
- \blacktriangleright in our case, a safe segmentation is dependent on the Viterbi alignment \hat{A}

Save Segmentation

a position of a safe segmentation is called a rift, e.g.:



whereas the following would be a unsafe segmentation:

because a word in the translated sentence is aligned to words in two different segments of the input sentence

Segmentation Algorithm

- ▶ now a ME-model assigns to each location in the French sentence a score p(rift | x)
- then a dynamic programming algorithm selects the optimal splitting of the sentence, so that no segment contains more than 10 words
- these segments are not logically coherent, but can be translated sequentially from left to right

Segmentation Algorithm

- ▶ now a ME-model assigns to each location in the French sentence a score p(rift | x)
- ▶ then a dynamic programming algorithm selects the optimal splitting of the sentence, so that no segment contains more than 10 words
- these segments are not logically coherent, but can be translated sequentially from left to right

Segmentation Algorithm

- ▶ now a ME-model assigns to each location in the French sentence a score $p(rift \mid x)$
- then a dynamic programming algorithm selects the optimal splitting of the sentence, so that no segment contains more than 10 words
- these segments are not logically coherent, but can be translated sequentially from left to right

System's Segmentation

An example of the system's segmentation:

Monsieur l'Orateur

j'aimerais poser une question au Ministre des Transports.

A quelle date le nouveau règlement devrait il entrer en vigeur?

> Quels furent les critères utilisés pour l'évaluation de ces biens.

Nous

savons que si nous pouvions contrôler la folle avoine dans l'ouest du Canada, en un an nous augmenterions notre rendement en céréales de 1 milliard de dollars.

Word Reordering

- ▶ the English word order is often very different from the French one
- ▶ input French sentences are shuffled in a preprocessing stage into a order more closely to the English word order

Word Reordering

- the English word order is often very different from the French one
- input French sentences are shuffled in a preprocessing stage into a order more closely to the English word order

NOUN de NOUN

French phrases which have the *NOUN de NOUN* form are sometimes changed in the English translation:

NOUN de NOUN phrases and their English equivalents.

Word-for-word Phrases			
somme d'argent	sum of money		
pays d'origin	country of origin		
question de privilège	question of privilege		
conflit d'intérêt	conflict of interest		
Interchange	d Phrases		
bureau de poste	post office		
taux d'intérêt	interest rate		
compagnie d'assurance	insurance company		
gardien de prison	prison guard		

- ► ME-model decides, given a French *NOUN de NOUN* phrase, if the nouns should be interchanged in the English translation
- ▶ *y=no-interchange*, if the English translation is a word-for-word translation, otherwise *y=interchange*
- candidate features are taken from a template (next slide)

- ► ME-model decides, given a French *NOUN de NOUN* phrase, if the nouns should be interchanged in the English translation
- ▶ *y=no-interchange*, if the English translation is a word-for-word translation, otherwise *y=interchange*
- candidate features are taken from a template (next slide)

- ► ME-model decides, given a French *NOUN de NOUN* phrase, if the nouns should be interchanged in the English translation
- ▶ *y=no-interchange*, if the English translation is a word-for-word translation, otherwise *y=interchange*
- candidate features are taken from a template (next slide)

Feature Template

▶ □₁ and □₂ are the French words, ◊ means interchange or no-interchange:

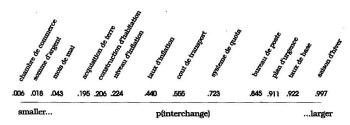
Template features for NOUN de NOUN model.

Template	Number of Actual Features		f(x,y)	y) = 1 if and only if			
1	$2 \mathcal{V}_{\mathcal{F}} $	y = ◊	and	NOUN _L = □			
2	$2 \mathcal{V}_{\mathcal{F}} $	$y = \diamond$	and	$NOUN_R = \square$			
3	$2 \mathcal{V}_{\mathcal{F}} ^2$	$y = \diamond$	and	$NOUN_L = \square_1$ and $NOUN_R = \square_2$			

• e.g. temlate 1 features consider only the left noun:

$$f(x,y) = \begin{cases} 1 & \text{if y=interchange and left NOUN=système} \\ 0 & \text{otherwise} \end{cases}$$

- ▶ feture-selection algorithm is used to construct a ME-model
- ▶ here some examples, if p(interchange) > 0.5, the nouns are interchanged:



References

- Adam L. Berger, Stephen A. Della Pietra, Vincent J. Della Pietra; A Maximum Entropy Approach to Natural Language Processing; 1996 Association for Computational Linguistics
- Edward Schofield; Fitting maximum-entropy models on large sample spaces; 2006, Dissertation Imperial College London
- Wikipedia; Principle of maximum entropy; http://en.wikipedia.org/wiki/Maximum_entropy; (accessed 6. December 2006)
- Wikipedia; Lagrange multipliers; http://en.wikipedia.org/wiki/Lagrange_multipliers; (accessed 6. December 2006)
- Wikipedia; Likelihood-Quotienten-Test; http://de.wikipedia.org/wiki/Likelihood-Quotienten-Test; (accessed 6. December 2006)

