Geophysical Unsupervised Signal Processing

Fuchs Anna & Pessentheiner Hannes

Signal Processing and Speech Communication Laboratory

Advanced Signal Processing 2
Outline

Introduction
 Model Description and Assumptions
 Summary

Approaches for Unsupervised Processing
 Wiener Filter and Unsupervised Processing
 Predictive Deconvolution
 Blind Source Separation
 ICA-Based Seismic Deconvolution
 Results
 Summary

Degenerate Unmixing Estimation Technique – DUET
Reflection Seismic
Reflectivity Function

→ Earth response to an ideal impulsive, seismic source
How?

- Information on the subsurface of an area under analysis
- Produce seismic waves (dynamite, air-guns, ...)
- Reflection on subsurface
- Sensor grids located in the surface measure reflections

Why?

- Exploration and monitoring of hydrocarbon reservoirs
- Assessing sites for CO$_2$ sequestration
- Nuclear waste deposition
- Information about structure of earth
Model Description

Source Signals

- s_1
- s_2
- s_3
- s_m

Mixing Matrix A

$$A = \begin{bmatrix}
a_{11} & a_{21} & \ldots & a_{n1} \\
a_{12} & a_{22} & \ldots & a_{n2} \\
& & \ddots & \vdots \\
a_{1m} & a_{2m} & \ldots & a_{mm}
\end{bmatrix}$$

Observed Signals

- x_1
- x_2
- \ldots
- x_m

Different Goals

- Finding $s_1(n)$ – Reflectivity Function
- Finding A – Wavelets
- Separation of $s_i(n)$
Problems:

- Seismic source and subsurface propagation not ideal
- Output is mixture of different waves which must be identified and separated

Hypothesis:

- Linear distortion and mixtures
- Convolution relationship – source signal and propagation environment are not ideal
- Mixing – linear combination
Summary

- Geophysical applications include
 - Estimation of different sources
 - Estimation of reflectivity function
- Problems due to the not ideal environment conditions
- Prior assumption of model to be able to use known algorithms
Approaches for Unsupervised Processing [1]

Wiener Filter and Unsupervised Processing

- Geophysical SP - prominent role to develop unsupervised methods
- Wieners theory to seismology (Enders A. Robinson 1954 [2])
Question

- Additional information to the measured data about input sources and the convolution/mixing system
- If one of them is known – supervised methods

Assumption

- No additional information available
Source Signature – known

- Deterministic supervised deconvolution in seismology
- e.g. estimate reflectivity function through linear filtering, using the Wiener-Levinson minimization of the MSE

Source Signature – unknown

- Unsupervised task
- Exploiting prior knowledge about structure of source signature and the reflectivity
Task

- Get reflectivity function from measured data using deconvolution

Predictive Deconvolution

- Wiener theory on prediction and filtering could be used for predictive, unsupervised deconvolution [2]

Two Hypothesis

1. The seismic wavelet is the impulse response of an all-pole, minimum phase system.

2. The impulse response of the layered earth model behaves like a decorrelated (white) signal, so that it has a flat frequency spectrum.
Predictive Deconvolution

- Deconvolution using prediction-error filter uses only SOS – simplification of task BUT
- Prediction-error filter acts as a whitening filter – ideally recovers uncorrelated signals
- Problem if seismic wavelet cannot be modeled as an all-pole, minimum phase filter
Limitation of linear predictive deconvolution

Next step – from SOS to HOS
Blind Source Separation

![Diagram showing blind source separation](image)
Blind Source Separation

Source Signals

\[s_1 \]
\[s_2 \]
\[s_3 \]
\[\vdots \]
\[s_m \]

Mixing Matrix \(A \)

\[
\begin{bmatrix}
 a_{11} & a_{21} & \cdots & a_{n1} \\
 a_{12} & a_{22} & \cdots & a_{n2} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{1m} & a_{2m} & \cdots & a_{mm}
\end{bmatrix}
\]

Observed Signals

\[x_1 \]
\[x_2 \]
\[\vdots \]
\[x_m \]

\[
x(n) = [x_1(n) \quad x_2(n) \quad \ldots \quad x_M(n)]^T
\]

\[
s(n) = [s_1(n) \quad s_2(n) \quad \ldots \quad s_N(n)]^T
\]

\[
x = A \cdot s \rightarrow \hat{s} = W \cdot x \quad \text{with} \quad W = A^{-1}
\]
Goal: Estimate all source signals

- W can recover sources if mixing system is linear, memory-less and time-invariant
- SOS: W is adjusted so as to decorrelate the recovered signals \hat{s} (using PCA)
- HOS: W is adjusted so that recovered signals become mutually independent
Blind Source Separation using SOS and HOS
ICA-Based seismic Deconvolution

ICA – Independent Component Analysis

- Computational model for separating multiple sources
- Produces additive subcomponents
- Assumption:
 - Mutual statistical independence
 - Source signals are non-Gaussian and i.i.d (satisfied by reflectivity)
Model

\[x = As \]

\[
\begin{pmatrix}
 x(0) \\
 x(1) \\
 \vdots \\
 x(N-1)
\end{pmatrix}
= A
\begin{pmatrix}
 \rho(0) \\
 \rho(1) \\
 \vdots \\
 \rho(N-1)
\end{pmatrix}
\]

\[
A = \begin{bmatrix}
 h(0) & 0 & \cdots & 0 & 0 & \cdots & 0 \\
 h(1) & h(0) & \cdots & 0 & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 h(N_h - 1) & \vdots & \cdots & h(0) & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \cdots & h(1) & h(0) & \cdots & \vdots \\
 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
 0 & 0 & \cdots & h(N_h - 1) & h(N_h - 2) & \cdots & h(0)
\end{bmatrix}
\]

→ Single Snapshot → delayed versions of \(x(n) \) and \(\rho(n) \) – \(N \) snapshots
Step 1 – Rearrangement

- Obtaining of $M < N$ mixtures
- Improvement of statistical properties of the mixture matrix

\[
X = \begin{bmatrix}
0 & 0 & \ldots & 0 & x(0) & \ldots & x(N - M) \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & x(0) & \ldots & \ldots & x(M - 2) & \ldots & x(N - 2) \\
x(0) & x(1) & \ldots & \ldots & x(M - 1) & \ldots & x(N - 1)
\end{bmatrix}
\]
Step 2 – Data Whitening

- Decorrelation of the signals
- Equalize power

\[z(n) = W_{SOS}x(n) \]

\(W_{SOS} \) obtained with SOS

Step 3 – Dimension Reduction

- Linear transformation – new set of \(N_h \) mixtures

\[\tilde{x}(n) = N_k^T W_{SOS}^T z(n) \]
Step 4 – ICA

\[\hat{s}(n) = \tilde{W}_{HOS} \tilde{x}(n) \]

\[\tilde{W}_{HOS} = \tilde{Q} \tilde{W}_{SOS} \]

with \[\tilde{Q} \]
given by ICA

Step 5 – Wavelet and Reflectivity Estimation

\[\hat{s}_i = h_i^T \tilde{x}(n) \]

- Optimal Pair \((\hat{s}_* (n), h_*)\) gives original reflectivity and wavelet
- \(h_i\) from \(\tilde{W}_{HOS}\)
Results I – Synthetic Data

(a) Noiseless synthetic trace; (b) Synthetic reflectivity function; (c) Linear prediction error filter; (d) Estimated reflectivity based on estimated wavelet
(a) 35-points Berlage wavelet; (b) estimated wavelet by B-ICA; (c) zero-pole plot for the original wavelet; (d) zero-pole plot for estimated wavelet
Summary

- Differences between supervised and unsupervised processing
- Predictive deconvolution to estimate reflectivity function
- Limitations of predictive deconvolution – go to HOS
- Blind source separation to estimate sources
- Combination of deconvolution and BSS – ICA-Based seismic Deconvolution
Volcano Hazards

- many villages close to volcanos
- predict eruptions, tremors, earthquakes to avoid casualties

Problem:
lack of prediction knowledge
 - number of sources?
 - types of sources?

Solution:
use blind source separation for data-mining

Landscape after ashfall.

How to improve knowledge of volcanic behaviour?
DUET: Degenerate Unmixing Estimation Technique

Features

- for blind separation of multiple sources
 - Volcano Tectonic (VT) events
 - Long Period (LP) events
- based on pair of seismograph sensors (stations)
- second sensor enables use of a time-frequency–lattice \((\tau, \omega)\)
- stations separated by less than half a wavelength of interest
- performs best if there’s no signal overlap between sources
- **robust** behaviour in echoic mixtures
DUET: Degenerate Unmixing Estimation Technique

Seismic sources & absorbing sensors.

Are there any assumptions?
Assumptions

- Anechoic Mixing Model
- W-Disjoint Orthogonality
Assumptions: Anechoic Mixing Model

- no realistic model
- direct paths only (non-echoic signals)
- stations provide attenuation & delay parameters of waves

Anechoic (Ideal) Mixing Model.

Echoic (Realistic) Mixing Model.
Assumptions: Anechoic Mixing Model cont’d

- model

\[
x_k(t) := \sum_{j=1}^{N} a_{k,j} \cdot s_j(t - \delta_{k,j}) \quad k = \{1, 2\}
\]

where

- \(x_k(t)\) ... mixture of k-th sensor
- \(s_j(t)\) ... source signal
- \(a_{k,j}\) ... attenuation coefficient
- \(\delta_{k,j}\) ... time delay
- \(k\) ... sensor index
- \(j\) ... source index
Assumptions: W-Disjoint Orthogonality (WDO)

- disjoint supports of signals’ windowed Fourier transforms (\mathcal{F})
- every (τ, ω)-point in a mixture $x_j(t)$ dominated by contribution of at most one source

\[\Omega_1 \cap \Omega_2 = 0 \]

Disjoint sets Ω_1 & Ω_2.

WDO and non-WDO signals.
Assumptions: W-Disjoint Orthogonality (WDO) cont’d

- given window function $w(t)$ & source signals $s_j(t), s_k(t)$
- given windowed \mathcal{F} of $\hat{s}_j(\tau, \omega), \hat{s}_k(\tau, \omega)$

$$\hat{s}_j(\tau, \omega) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} w(t - \tau) s_j(t) e^{-i\omega t} dt$$

where ω is the angular frequency and τ is the window shift

- WDO if supports of $\hat{s}_j(\tau, \omega), \hat{s}_k(\tau, \omega)$ are disjoint

$$\hat{s}_j(\tau, \omega) \cdot \hat{s}_k(\tau, \omega) = 0 \quad \forall \tau, \omega, \quad \forall j \neq k$$
Assumptions: W-Disjoint Orthogonality (WDO) cont’d

- if $w(t) = 1$
 - simply \mathcal{F} of whole mixture
 - signals have to be frequency-disjoint to satisfy WDO-condition (frequency-division multiplexed signals)
- if $w(t) = \delta(t)$
 - signals have to be time-disjoint to satisfy WDO-condition (time-division multiplexed signals)

How does the algorithm work?
Signal Representation

- mixture signals can be decomposed into weighted & shifted source signals in time & frequency domain

\[
x_k(t) := \sum_{j=1}^{N} a_{k,j} \cdot s_j(t - \delta_{k,j})
\]

\[
\hat{x}_k(\tau, \omega) := \sum_{j=1}^{N} a_{k,j} \cdot \hat{s}_j(\tau, \omega) \cdot e^{-i\omega \delta_{k,j}}
\]

Sources, sensors, and delays.
Signal Representation cont’d

- without loss of generality

\[a_{1,j} = 1 \quad \delta_{1,j} = 0 \quad a_{2,j} = a_j \quad \delta_{2,j} = \delta_j \]

- interested in the differences of both captured signals
- vectorized mixture signals \((k = \{1, 2\})\)

\[
\begin{bmatrix}
\hat{x}_1(\tau, \omega) \\
\hat{x}_2(\tau, \omega)
\end{bmatrix} =
\begin{bmatrix}
1 & \cdots & 1 \\
a_1 e^{-i\omega\delta_1} & \cdots & a_N e^{-i\omega\delta_N}
\end{bmatrix}
\begin{bmatrix}
\hat{s}_1(\tau, \omega) \\
\cdots \\
\hat{s}_N(\tau, \omega)
\end{bmatrix}
\]

How to decompose the mixture signals?
Binary Mask

- given mixture signal $x_k(t)$
- given \mathcal{F} of $\hat{x}_k(\tau, \omega)$

\[
\hat{x}_k(\tau, \omega) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sum_{j=1}^{N} a_{k,j} \cdot s_j(t - \delta_{k,j}) e^{-i\omega t} dt
\]

\[
\hat{x}_k(\tau, \omega) := a_1 \cdot \hat{s}_1(\tau, \omega) \cdot e^{-i\omega \delta_1} + a_2 \cdot \hat{s}_2(\tau, \omega) \cdot e^{-i\omega \delta_2} + \ldots + a_N \cdot \hat{s}_N(\tau, \omega) \cdot e^{-i\omega \delta_N}
\]
Binary Mask cont’d

- source separation in case of WDO using an ideal binary mask

\[\hat{s}_j(\tau, \omega) := M_j(\tau, \omega) \cdot x_k(\tau, \omega), \ \forall \tau, \omega \]

where

\[M_j(\tau, \omega) := \begin{cases} 1 & \hat{s}_j(\tau, \omega) \neq 0 \\ 0 & \text{otherwise} \end{cases} \]

and

\[M_j(\tau, \omega) \cdot M_k(\tau, \omega) = 0 \ \forall \tau, \omega \ \forall j \neq k \]
Binary Mask cont’d

Binary mask of a mixture signal for source 2.

How do we obtain coefficients a_j & δ_j in case of WDO-signals?
Parameter Estimation

WDO- & Anechoic Source Signals

- ratio of \((\tau, \omega)\)-representations of mixtures depends on active source component mixing parameters only

\[
R(\tau, \omega) := \frac{\hat{x}_2(\tau, \omega)}{\hat{x}_1(\tau, \omega)}
\]

- assume set of \((\tau, \omega)\) on \(\Omega_j := \{(\tau, \omega) : M_j(\tau, \omega) = 1\}\)

\[
R(\tau, \omega) := a_j \cdot e^{-i\omega\delta_j}
\]

\[
a_j := |R(\tau, \omega)| \quad \delta_j := -\frac{1}{\omega} \arg R(\tau, \omega)
\]

Do we have ideal conditions in real world?
Parameter Estimation cont’d

Approximated WDO- & Echoic Source Signals

- in field scenarios perfect WDO never given
- high degree of WDO approximation per frame if
 - small overlap of source spectra in frequency
 - small overlap of source spectra in time
- increase degree of WDO approximation by
 - changing sensor position
 - changing window type/size (ao)

In case of non-WDO, why is the DUET still suitable?

- Volcano Tectonic and Long Period events ...
 - hardly occur simultaneously and, thus,
 - exhibit high degree of WDO approximation
Parameter Estimation cont’d

- accurate estimation of true coefficients required

\[\alpha = a_j - \frac{1}{a_j} \]

\[\hat{\alpha}_j = \frac{\sum_{(\tau, \omega) \in \Omega_j} |\hat{x}_1(\tau, \omega) \cdot \hat{x}_2(\tau, \omega)|^2 \cdot \alpha}{\sum_{(\tau, \omega) \in \Omega_j} |\hat{x}_1(\tau, \omega) \cdot \hat{x}_2(\tau, \omega)|^2} \]

\[\hat{\delta}_j = \frac{\sum_{(\tau, \omega) \in \Omega_j} |\hat{x}_1(\tau, \omega) \cdot \hat{x}_2(\tau, \omega)|^2 \cdot \delta}{\sum_{(\tau, \omega) \in \Omega_j} |\hat{x}_1(\tau, \omega) \cdot \hat{x}_2(\tau, \omega)|^2} \]

How do we obtain mask \(M_j \) to separate source signals?
Parameter Estimation & Demixing cont’d

1. construct \((\tau, \omega)\)-representations \(\hat{x}_1(\tau, \omega)\) & \(\hat{x}_2(\tau, \omega)\)

2. label each non-zero \((\tau, \omega)\)-point with computed pair \((\hat{\alpha}, \hat{\delta})\)

3. weight each pair with energy of corresponding \((\tau, \omega)\)-point

4. generate histogram of these labels

5. find peaks in histogram for each source

6. construct masks \(M_j\) to determine \(\Omega_j\) for each source

7. apply masks to mixture

\[\hat{s}_j(\tau, \omega) = M_j(\tau, \omega) \cdot \hat{x}_1(\tau, \omega) \]

8. convert each \(\hat{s}_j(\tau, \omega)\) back into time domain
Results (with both parameters α and δ)

(α, δ)-lattice for one (top left) and six (top right) sources. Original, mixed, and separated signals (bottom).
Results (with single parameter δ)

Mixtures of Long Period (LP) and Volcano Tectonic (VT) events at both sensors (top/bottom left). Band-pass filtered mixtures (top/bottom right).
Results (with single parameter δ) cont’d

Band-pass filtered mixtures (top left) and corresponding delay histogram of VT and LP events (top right). Separated signals of VT (bottom top) and LP (bottom bottom).
Conclusion

- DUET applied to geophysical data
- for blind source separation of VT and LP events
- results show that DUET ...
 - is a powerful tool
 - for identifying, separating, and locating VT and LP events
 - to better understand the source mechanism behind tremors, earthquakes, and eruptions caused by volcanic activities
References

