TU

Grazm

Software Interface for the Configuration of an
AD1835A Audio Codec on an ADSP-21369 Processor

Bachelor Thesis
by
Matthias Hotz

Graz University of Technology
Institute of Broadband Communications

Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot Kubin
Advisor: Dipl.-Ing. Dr.techn. Werner Magnes

Graz, June 2010

Bachelor Thesis

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

Graz, June 28, 2010

Matthias Hotz

Institute of Broadband Communications I

ABSTRACT Bachelor Thesis

Abstract

During the laboratory “Digital Audio Engineering” the configuration of the AD1835A audio
codec, itself connected to an ADSP-21369 signal processor, exhibited erratic behavior. The
objective of this thesis has been to thoroughly analyze the involved hardware to develop
from scratch a reliable, convenient and enhanced software interface for the configuration
of the codec. From the physical connections on the printed circuit board over the utilized
protocol and the configuration of the communication interface of the processor the entire
framework required for the configuration of the codec is discussed in-depth. The process of
configuration including all its particular characteristics is investigated and the foundations
of the new software interface are exposed. Two exemplary applications, a volume control and
an input level meter, depict the practical utilization of the software interface. Concluding,
the acquired knowledge is applied to identify the weaknesses and causes of error of the code
used during the laboratory.

Zusammenfassung

Wahrend der Labortibung “Digitale Audiotechnik” zeigte sich der Konfigurationsvorgang fiir
den tiber den Signalprozessor ADSP-21369 angesprochenen Audio-Codec AD1835A mehrfach
als fehlerhaft. Ziel dieser Arbeit war die tiefgriindige Analyse der dabei involvierten Hard-
ware, um anschlieflend von Grund auf eine zuverldssige, komfortable und erweiterte Software-
Schnittstelle fir die Konfiguration des Codecs zu entwickeln. Es werden von den physikalis-
chen Verbindungen auf der Leiterplatte iiber das verwendete Protokoll bis zur Konfigura-
tion der Kommunikationsschnittstelle des Signalprozessors alle Voraussetzungen umfassend
erortert, der Vorgang zur Konfiguration des Codecs eingehend analysiert und die grundlegen-
den Elemente der neu entwickelten Software diskutiert. Abschliefend wird die Verwendung
der Software-Schnittstelle anhand zweier Anwendungen, einer Lautstérkeregelung und einer
Aussteuerungsanzeige, demonstriert und das fundierte Wissen tiber die Konfiguration fir die
Analyse des Quellcodes der Laboriibung herangezogen, um dessen Fehlerquellen aufzuzeigen.

1I Institute of Broadband Communications

Bachelor Thesis CONTENTS

Contents
1 Introduction 1
2 Utilized Hardware and Objective of the Thesis 1
2.1 ADSP-21369 Digital Signal Processor. 1
2.2 ADI835A Audio Codec 2
2.3 ADSP-21369 EZ-KIT Lite® Evaluation Board 4
2.4 Objective of the Thesis 5
3 Essence of the Software Interface 5
3.1 Connections on the Printed Circuit Board 5
3.2 Signal Routing L 6
3.2.1 Architecture of the Serial Peripheral Interface 6
3.2.2 Configuration of the Pin Buffers 8
3.2.3 Routing Signals between the Pin Buffers and SPI Port 10
3.3 SPI Port Configuration on the DSP 10
3.3.1 SPI Control Register 10
3.3.2 SPI Baud Rate Register 11
3.3.3 SPI Port Flag Register 12
3.3.4 Configuration Process 12
3.4 SPI Communication 13
3.5 Representation of the Configuration 15
3.6 Configuration of the Codec 17
3.7 Summary ... e 18
4 Applications 18
4.1 Volume Control 18
4.2 Input Level Meter 20
5 Conclusion 21
Bibliography 22
Appendix A Excerpts of the AD1835A Data Sheet 23
A.1 Data Frames associated with the Registers 23
A.2 SPI Transfer Diagram 24
Appendix B Excerpts of the ADSP-21369 Documentation 25
B.1 SPI Transfer Diagram o 25
B.2 Clock Relationship to the Input Clock 25
Appendix C Source Code 25
C.1 Embedding the Software Interface into a Project 25
C.2 Signal Routing, SPI Configuration and Communication 26
C.2.1 spi.h .. o 26

Institute of Broadband Communications 111

LIST OF FIGURES Bachelor Thesis

C.3

C4

C.2.2 spi.asm e 27
Codec Configuration Representation and Modification 31
C.3.1 ad1835a.h 31
C.3.2 adl1835a.asm 37
LED Routing and Control L 39
C4.1 led.h . . . e 39
C.4.2 led.asm 40

List of Figures

© o0 N O Ut =W N =

I S e e T e T e T e T o T = St
O © 00 N O Ot ks W NN = O

ADSP-21369 SHARC® processor block diagram 2
AD1835A functional block diagram 3
ADSP-21369 EZ-KIT Lite® system architecture block diagram 4
Objective of the thesis — from the hardware to the configuration 5
DPI system design — pins, signal routing unit and interfaces 7
SPI bus architecture L 8
Schematic diagram of the pin buffer L. 8
Internal structure of the primary SPI port in core-driven master mode 14
Structure of a data frame for configuration 16
Control register map 23
Data frame: DAC Control 1 23
Data frame: DAC Control 2 23
Data frame: DAC Volume Control 23
Data frame: ADC Peak 23
Data frame: ADC Control 1 24
Data frame: ADC Control 2 24
Data frame: ADC Control 3 24
SPI transfer diagram of the AD1835A control port 24
SPI transfer diagram for CPHASE = 0. 25
Clock relationship to the input clock 25

List of Tables

S O s W N =

Configurable features of the AD1835A codec. 3
Physical connections on the evaluation board 6
SPI bus signal naming convention L 0L 6
SPI bus signals of the AD1835A control port 8
Function table of the pin buffer enable state 9
Structure of the configuration buffer 16

v

Institute of Broadband Communications

Bachelor Thesis LISTINGS

Listings
1 Syntax of the signal routing macro provided by Analog Devices 9
2 Configuration of the pin buffers L. 9
3 Routing of the SPIsignals 10
4 Configuration of the primary SPI port of the DSP 13
) Transmission of a data word 13
6 Waiting for SPI transfer completion 14
7 Realization of the minimum wait time between successive transfers 15
8 Receiving a data word via SPI with transfer initiation mode TIMOD = 01 . . . 15
9 Transmission of the content of the configuration buffer to the codec 17
10 Configuration of the interrupt inputs TRQ0 and IRQT 19
11 Interrupt service routine for the push buttonpPB1 19
12 Routing of the LEDs and configuration of the timer 20
13 Interrupt service routine for the timer interrupt 21

Institute of Broadband Communications \%

Bachelor Thesis 1 INTRODUCTION

1 Introduction

The information age brought an omnipresent need for computing power. Digital signal
processors (DSP) play an important role in satisfying those needs, being the driving force
in many devices such as video players, audio devices and mobile phones.

At Graz University of Technology, a laboratory on digital signal processors, “Digital Audio
Engineering”! (DAL), provides a first insight into this fascinating technology. During the
course the processor ADSP-21369 from Analog Devices is studied and put into operation
using the associated evaluation board ADSP-21369 EZ-KIT Lité®. The primary focus of
the course is to familiarize the student with the general architecture, arithmetic operations
and elements of flow control to subsequently implement some audio applications. Due to
the complexity of the hardware its detailed configuration is not considered.

The evaluation board features the audio codec chip AD1835A from Analog Devices which
is the bridge between the analog audio signals and the digital world of the DSP. During the
course some problems regarding the configuration of the codec chip emerged, occasionally
configured settings did not take effect.

This circumstance offered a motivation and an opportunity to dive into the depths of the
involved hardware, given the aim for this thesis to rework and expand the configuration
of the codec while supplementing the gained knowledge during the course with a deeper
understanding of the hardware.

2 Utilized Hardware and Objective of the Thesis

The definition of the objective, the configuration of the codec chip AD1835A, may sound
rather vague. In order to put it more concretely this chapter provides an introduction to
the involved hardware. Starting point is the signal processor, followed by the codec and the
evaluation board. Finally, this information is put together to formulate a tangible definition
of the established aim.

2.1 ADSP-21369 Digital Signal Processor

The ADSP-21369, in the remainder of this thesis referred to as DSP, is a high performance
floating-point processor with a 400 MHz core instruction rate featuring the Super Harvard
Architecture (SHARC®) of Analog Devices which provides a separate program and data
memory bus?. The DSP possesses a single-instruction, multiple-data (SIMD) computational
architecture with two processing elements (PE) supporting 32-bit fixed-point and 32-bit/40-
bit floating-point operations. It provides 2 Mbit SRAM and 6 Mbit ROM on-chip memory
and has a very rich interface to communicate with peripheral devices including an S/PDIF
transceiver, serial ports (SPORT), Universal Asynchronous Receiver Transmitters (UART)
and Serial Peripheral Interfaces (SPI) amongst others [5].

Figure 1% depicts a block diagram of the DSP where the relevant parts are displayed in
black. By reason of the complexity of this processor only the blocks which are fundamental
to the problem at hand are further considered. It is needless to say that the core processor,
the on-chip memory and the program and data bus are essential for program execution, but
as they covered by the DAL course mentioned in Chapter 1 they are not considered here.
Besides the course, continuative information can be found in [5,7,9].

Signal processing applications often need the processor to extensively communicate with off-
chip devices. To disburden the core processor the ADSP-21369 contains an [/O-processor

LCourse number 441.055, taught by DI Dr. Werner Magnes and DI David Fischer.

2The program memory bus may also be used for data transfers [7, ch. 1].

3This diagram was taken from a past revision of the programming reference as, in the opinion of the
author, it provides a more comprehensive overview than the diagram contained in the current revision.

Institute of Broadband Communications 1

2 UTILIZED HARDWARE AND OBJECTIVE OF THE THESIS Bachelor Thesis

CORE PROCESSOR =e—— | JTAG TEST & EMULATION |
4 BLOCKS OF
- INSTRUCTION ON-CHIP MEMORY
TIMER CACHE
32 X 48-BIT

H H 2M BIT RAM,
I ﬁ 6M BIT ROM (*Reserved)

PWM 32
DAG1 DAG2
PROGRAM ADDR DATA
8X4X32 8X4X32 SEQUENCER [= EXTERNAL PORT DATA

8
==l | SDRAM =D
Ix H PANVEN H CONTROLLER =
a 18
PM ADDRESS BUS 32 L ASYNCHRONOUS <3i> 3 K=
MEMORY & CONTROL
v DM ADDRESS BUS 32 ” I {} ” ” ” ” S INTERFACE =
—— 8 o
— 3 PMDATA BUS I"" ” l ” lL ” ” SHARED MEMORY = - 24
T I T INTERFACE \i{>
ADDRESS
ki [DMDATABUS o4 10A(24) 10D(32) reS
‘ | 1 [
PROCESSING PROCESSING PX REGISTER 10P REGISTER (MEMORY MAPPED) conttien
ELEMENT ELEMENT CONTROL, STATUS, & DATA BUFFERS
#Ex) p 34 CHANNELS

PREQSION CLOCK
GENERATORS (4)

INPUT DATA PORT, TWO WIRE
PDAP INTERFACE

SRC (8 CHANNELS, K—
SPDIF (RX/TX) =

DIGITAL APPLICATION INTERFACE

LINN ONILNOY IVA
LINNONILNOY I1dd

=[S DIGITAL PERIPHERAL INTERFACE
1/0 PROCESSOR

< 20 A\ art

Figure 1: ADSP-21369 SHARC® processor block diagram [3, p. 1-4]

that handles data transfers to peripherals managing all details of the communication. The
I/O processor includes several direct memory access (DMA) channels which enable direct
access to the memory without involvement of the core processor. The offered interfaces
are divided into two groups named the digital application interface (DAI) and the digital
peripheral interface (DPI), each having a specific number of assigned physical pins. These
pins are connected to an individual signal routing unit (SRU) for each group which allows
a flexible assignment of the physical pins to the interfaces (cf. Figure 1) [9, ch. 2 and 6].

Three serial ports of the DAI are used to receive data from the analog-to-digital converters
(ADC) and send data to the digital-to-analog converters (DAC) of the AD1835A audio
codec. Anyway, this topic is beyond scope and will not be discussed. More information on
the serial ports of the DSP is available in [9, ch. 7].

The configuration of the AD1835A, being the focus of this thesis, is performed using a
Serial Peripheral Interface (SPI) port of the DPI. SPI is a bus system that was introduced
by Motorola with the MC68HC11 microcontroller. Unfortunately, there is no official SPI
standard but, however, the original reference manual of the MC68HC11 might serve as a
specification while it is hard to find. The current revision of the manual still contains the
chapter on the SPI and is available from Motorola’s spin-off Freescale Semiconductors [10,
ch. 8]. Before more details about the SPI port and DPI are revealed in Chapter 3, the audio
codec and evaluation board are introduced.

2.2 AD1835A Audio Codec

The audio codec chip AD1835A provides a conversion between analog and digital audio
signals through one stereo ¥-A ADC and four stereo ¥-A DACs which are accessed via
serial ports. The converters can operate at different sample rates and word lengths and
many additional features are offered. The key features of this codec chip are summarized in
Table 1. All of these features are configurable through a dedicated control port realized as
SPI [1].

Figure 2 depicts a functional block diagram of the AD1835A where all blocks affected by

2 Institute of Broadband Communications

Bachelor Thesis 2 UTILIZED HARDWARE AND OBJECTIVE OF THE THESIS

ADC Features ‘ DAC Features
16-bit, 20-bit and 24-bit word length
48 kHz and 96 kHz sample rate 48 kHz, 96 kHz and 192 kHz sample rate

(192kHz: Only one DAC)
Clickless mute for every channel
8 different serial data output modes ‘ 6 different serial data input modes

Power-down mode

Optional digital high-pass filter Optional de-emphasis filter
at 32.0kHz, 44.1 kHz or 48 kHz
Peak level information 1024-step linear volume control

for every channel

Table 1: Configurable features of the AD1835A codec

DVDD DVDD ODVDD ALRCLK ABCLK ASDATA CCLK CLATCH CIN COUT MCLK PD/RST M /S AVDD AVDD
O Q—Q Q
DLRCLK <—| |—>| cLock |
DBCLK) () OUTLP1
f | VOLUME }—>
DSDATA1 SERIAL DATA DIGITAL S-A [OUTLNI

1/0 PORT FILTER -
DSDATA2 /0 PO o T DAC () OUTRP1

—»() OUTRN1
DSDATA3

] —»(ouTLP2
DSDATA4 | vouve | DIGITAL 2-A »() OUTLN2
! FILTER
[voume |
ADCLP S.A =

DAC |—»()OUTRP2
—»-() OUTRN2
- DIGITAL 0—! l_>
ADCLN ADC »| FITER VOLUME DIGITAL
< FILTER
f .| VOLUME l—>

| —»() OUTLP3
ADCRP 3-A " | biGmaL "—!]—»
VOLUME
ADC FILTER DIGITAL

CONTROL PORT

3-A |—»() OUTLN3
DAC +—»() OUTRP3
—»() OUTRN3
—»() OUTLP4
3-A —»() OUTLN4

v VoYY v by

ADCRN - VOLUME FILTER DAC () OUTRP4
—»() OUTRN4
FILTD
AD1835A «

O FILTR

))))))
J J J U J J

DGND DGND AGND AGND AGND AGND

Figure 2: AD1835A functional block diagram [1, p. 1]

the configuration are colored black.

The ADI1835A is configured by the content of a set of 10bit wide control registers, i.e.
three registers for DAC related settings, three registers for ADC related settings and eight
registers for the DAC output volume settings. Additionally, two 6 bit wide read-only status
registers provide information about the peak input level of the left and right ADC if peak
readback is enabled. In order to write to a control register or read from a peak level register
a 16 bit data word is sent to the codec via the control port. The interface of the control port
complies to the SPI specification and consists of four wires, serial clock (CCLK), device select
(CLATCH), data input (CIN) and data output (couT) visible in Figure 2.

Further details about the AD1835A codec regarding its configuration will be introduced
in Chapter 3, whereas the next section presents the evaluation board which connects the
AD1835A to the DSP.

Institute of Broadband Communications 3

2 UTILIZED HARDWARE AND OBJECTIVE OF THE THESIS Bachelor Thesis

2.3 ADSP-21369 EZ-KIT Lite® Evaluation Board

The ADSP-21369 EZ-KIT Lite® evaluation board, in the remainder of this thesis named
“evaluation board”, is a printed circuit board designed to provide a cost-efficient method to
evaluate the ADSP-21369 signal processor. Figure 3 depicts a block diagram of its system
architecture where the significant blocks are emphasized. The core of the evaluation board
is the ADSP-21369 to which different interfaces, connectors and various types of memory
are connected to enable a comprehensive assessment of the diverse features of the DSP [6].

4M x 32 512k x 8 1M x 8
SDRAM SRAM Flash

JTAG
Header

_ External
£ E Port
% o Debug -
D¢ Agent pg
Q =
(&) -
Expansion
Connectors
24.576 MHz Type A
Oscillator
Reset PB
DPI
Conn FLAGs
0,1,and 3

SPDIF In
Phono
SPDIF Out
Phono

RS
232 ADM3202
Conn|
5

;
g. “:L; 1 Conn
B

O|A5V 3.3V 1.3V Conn
B

SPI FLASH

Power Regulation

Figure 3: ADSP-21369 EZ-KIT Lite® system architecture block diagram [6, p. 2-2]

The audio codec chip AD1835A introduced in Section 2.2 is part of the evaluation board as
well. While the serial ports of the codec are connected to the DAI of the DSP, the control
port of the codec is connected to the DSP’s DPI. Connection to the inputs and outputs of
the codec is provided by cinch (RCA) connectors. Additionally, one stereo DAC (DAC 4) is
connected to a 3.5 mm TRS connector for use with headphones.

The evaluation board offers eight general-purpose light-emitting diodes (LED) and four
general-purpose push buttons connected to the DAT and DPI of the DSP. They will be used
in Chapter 4 to demonstrate the capabilities of the configuration routines.

Analog Devices offers a special integrated software development and debugging environment
(IDDE) named VisualDSP++ for software development in C/C++ and assembler for Ana-
log Devices’ signal processors*. Through the Universal Serial Bus (USB) of the personal
computer and the debug agent on the evaluation board, VisualDSP++ is connected to the
ADSP-21369 and provides convenient methods to download and test programs on the DSP.
Furthermore, libraries and example programs are included [4].

4The ADSP-21369 EZ-KIT Lite® includes an evaluation suite of VisualDSP+-+.

4 Institute of Broadband Communications

Bachelor Thesis 2 UTILIZED HARDWARE AND OBJECTIVE OF THE THESIS

2.4 Objective of the Thesis

Chapter 1 mentioned that the code® used to configure the AD1835A codec during the DAL
course frequently caused problems by means of settings not taking effect. This erratic
behavior was best noticed when DAC volumes were changed.

The objective of this thesis was to rebuild the whole software from scratch which is involved
in the configuration of the AD1835A codec, i.e. all software required to alter any setting
of the codec including the necessary communication framework. Based on the information
about the hardware previously communicated in this chapter, the goal can be concretized
as illustrated in Figure 4.

Analyze Hardware

Analyze the evaluation board
schematic and extract the
connections which are wired
on the printed circuit board

Perform Signal Routing

Initialize the DPI signal rout-

ing unit of the DSP to route
the physical pins to the SPI
port

Y

Perform Configuration

Use the SPI communication
routines and configuration
data word representation to
send the settings to the codec

Develop Representation

Map all configuration data
words of the codec to an
operational representation
in the software

Configure SPI Port

Configure the SPI port of the
DSP to conform to the sett-
ings required by the audio
codec

Y

Provide SPI Communication

Provide all necessary routines
required for the communi-
cation with the codec

Figure 4: Objective of the thesis — from the hardware to the configuration

3 Essence of the Software Interface

The hardware overview of Chapter 2 was utilized to concretize the goal, yielding the road
map for the process towards an implementation of the software interface depicted in Figure 4.
In this chapter the implementation of the software interface for the configuration of the
AD1835A codec will be discussed, following the aforementioned road map.

The implementation will be done using the assembler language of the DSP, being predes-
tined and illustrative for this task since it is tied very closely to the hardware of the DSP.
However, a description of the assembler language would be beyond scope of this thesis.
More information about the instruction set of the ADSP-21369 is available in [7, ch. 9 — 11],
programming in assembler using VisualDSP++ is described in [8].

3.1 Connections on the Printed Circuit Board

As it was mentioned in Chapter 2 the physical pins of the DSP are not connected directly
to its internal SPI port. Instead, the physical pins are connected to a signal routing unit
(SRU) that can be configured to route the signals between the physical pins and the internal
interfaces, e.g. an SPI port. In order to perform the routing the physical pins of the DSP
which are conntected to the control port of the AD1835A have to be determined.

The schematic of the evaluation board is available in [6, app. B]. The AD1835A audio codec
chip (U31) is shown on sheet 5 of the schematic. By tracing the signal labels of the AD1835A’s
pins CIN, COUT, CCLK and CLATCH® to the ADSP-21369 (U44) on sheet 2 of the schematic, the
physical pins of the DSP are investigated. Using the pin assignment table from the DSP’s

5This code was extracted from one of Analog Devices’ example programs included with VisualDSP++.
SCLATCH is connected through switch SW15 which is assumed to be in its on-position.

Institute of Broadband Communications 5

3 ESSENCE OF THE SOFTWARE INTERFACE Bachelor Thesis

data sheet [5, p. 51] the names of the pins in Analog Devices’ software library are uncovered.
These observations are summarized in Table 2.

Signal of Physical pin Pin’s name in
AD1835A at ADSP-21369 software library
CIN B15 DPI_PO1
couTt A16 DPI_PO02
CCLK A15 DPI_P03
CLATCH B14 DPI_P04

Table 2: Physical connections on the evaluation board

3.2 Signal Routing

The overview of the hardware in Chapter 2 revealed that the AD1835A codec offers an SPI
port, i.e. the control port for its configuration. The DSP contains two SPI ports, entitled
primary (SPI) and secondary (SPIB) SPI port, whereas the primary SPI port is used for
communication with the codec. The SPI ports are connected to the signal routing unit of
the DPI, named SRU2, as depicted in Figure 57.

In order to enable the configuration of the AD1835A, the control port of the codec, wired
to the DPI pins of the DSP, and the primary SPI port of the DSP need to be connected
through the SRU. Routing a physical DPI pin to a “virtual” pin of the primary SPI port by
means of the SRU requires the

o configuration of the pin buffer of the physical pin and

o routing of the internal pin buffer connectors to the virtual pin of the SPI port.

These steps depend on architectural information about the SPI. Therefore, the architecture
of the SPI is discussed beforehand, followed by the configuration of the pin buffers and the
routing to the primary SPI port.

3.2.1 Architecture of the Serial Peripheral Interface

The SPI is a bus system® enabling serial data transfer between a master and one or more slave
devices. The master controls and initiates all transfers, whereas the addressed slave device,
chosen via a dedicated select signal, only responds to the master.The physical connection
between the master and slave devices consists of four wires specified in Table 3. Figure 6a
illustrates the wiring of an SPI bus consisting of a master and three slave devices.

Signal Full name

SCLK or CLK (Serial) Clock

MOSI Master Output, Slave Input
MISO Master Input, Slave Output
SS or DS Slave Select or Device Select

Table 3: SPI bus signal naming convention

"This diagram was taken from a past revision of the hardware reference as, in the opinion of the author,
it provides a more comprehensive overview than the depictions contained in the current revision.

80nly the typical SPI bus wiring is considered since “daisy-chaining” of slave devices is not relevant
here.

6 Institute of Broadband Communications

SuorjeOIUNMWIWO,) purqprOIf JO 9INIJIISUf

G 2In31q

T 1S0p wesAs 14 ¢

1s ‘surd — u8

[L-F pue 9-F "d ‘g] seoejIequl pue jrun 3urnol [eusd

DPI PINS

DPI_PO1

DPI_P02

DPI_P03

DPI_P04

DPI PINS

DPI_P05

DPI_P06

DPI_PO7

DPI PIN
BUFFERS DPI PIN
r— BUFFERS
DPIPBOT_O SIGNAL ROUTING UNIT 2 SIGNAL ROUTING UNIT 2
E:} ~ DPLPBOT_I DPLPBOT. O
o » TMERT O GENERAL 1
DPI_PBOT1_PE_| PURPOSE Sl DPL_PBO1_ 1
TIMER1_| COUNTER/ <PIB DPI_PBO1_PE_|
> P TIMERS SPI_MOSI_
DPI_PB02_0 <t TIMER2_O > -
- SPLLMOSL_O o1 PB02. 0
DPI_PB02_I ——| TIMER2_| SPI_MISO_ —>
- - DPL_PBO2_|
DPI_PBO2_PE_| SPI_MISO_O
-t TIMER3_O SPI_CLK_I DPI_PB02_PE_|
- TIMER3_| SPLCLKO =
T DPI_PB03_O SPLDS. DPI_PB03_O -
-« SPI_DS_O > >
DPI_PBO3_I DS DPL_PBO3_
FLAGS SPI_FLGO_I —
DPI_PBO3_PE_| SPLFLGO.O . DPI_PBO3_PE_|
FLAG PE_O i
- ns-a-FE0 e SPILFLGI_I
:II DPI_PB04_O “ FLAG [15.4] -0 SPLFLG1O > DPI PB4 O {%_l
— SPI_FLG2_I
- = DPI PBO4 |
DPI_PBO4_| SPLFLG2.0 > DPI_PBO4._PE |
DPI_PBO4_PE_| SPIFLG3_I S
UART1 SPLFLG3_O >
— UARTO SPI_CLK_PBEN_O £ DPIPROS O
1 < - DPIPBOS.O UARTO_RX_I f— DPI_PBO5_|
X v
1\1 DPI_PBOS_| - UARTO_TX_O DPI_PBO5_PE_|
DPI_PBO5_PE_|
DPI_PB06_O N
- ™
DPI_PB06_0O »| PCG_EXTC_| PCGC DPI PBO6 |
ﬁ - DPI_PBOG_PE_|
DPI_PBO6_| -4 PCG_CLKC_O A TWI_SDATA_IN SR
DPI_PBO6_PE_| | PCG_SYNC_CLKC_I
TWI SCLK OF »
- PCG FSC O <
. SHARC
[DPI_PB07_O SIMD CORE TWI SDATA OF >
- »| PCG_EXTD_| PCGD AND
]\1 OPl_PBO71 PCG CLKD O ol MEMORY
- LK
DPI_PBO7_PE_| CORE
| PCG_SYNC_CLKD_| INTERFACE
- PCG_FSD_O

DPI_P08

DPI_P09

DPI P11

DPI_P12

DPI P13

DPI P14

R

L 10pyRg

SISO

HOVAYHLINI HEVMLAOS HHL 40 HONHSSH €

3 ESSENCE OF THE SOFTWARE INTERFACE Bachelor Thesis

Conventional
signal name

Control port
signal name

Description

CCLK CLK Clock Input

CIN MOSI Slave Input

couT MISO Slave Output
CLATCH DS Device Select Input

Table 4: SPI bus signals of the AD1835A control port

(a) Example — SPI bus with three slave devices

DS3
DS2
DS1
MISO Master
MOSI CLATCH SPI_FLG3
CLK CouT SPI_MISO
l l l Slave eIl SPIMOSI Master
(Codec) CCLK SPI_CLK (©sP)
9552| |9552| | 9552
ga~ ga~x 8a~=
Slave 3 Slave 2 Slave 1

(b) SPI bus between codec and DSP

Figure 6: SPI bus architecture

At the SPI bus for the configuration of the codec, the DSP acts as master and the AD1835A
is a slave®. The SPI port of the DSP mostly follows the naming convention of Table 3,
except the four available the slave select outputs are named “flag” [9, p 12-3]. The control
port of the codec, however, uses completely different names. Based on the information from
the data sheet of the ADI1835A [1, p. 12], the correspondance to the conventional signal
names is established in Table 4. Figure 6b summarizes the determined SPI bus connections.

3.2.2 Configuration of the Pin Buffers

Before the information about the bus architecture is utilized, another concept needs to be
introduced. Within the context of the SRU a physical DPI pin is replaced by a logical inter-
face named pin buffer. Its internal interface to the SRU consists of three connectors, enable
(PBENxx_I), input (DPI_PBxx_I) and output (DPI_PBxx_0), as depicted in Figure 7. Depending

J\ DPI_PBxx_O

-

Interface doreeor | PIN o Physical
to SRU —> BUFFER <— | DPIpin

ENABLE

L PBENxx_|
—

Figure 7: Schematic diagram of the pin buffer [9, p. 6-8]

9The SPI flash memory shown in Figure 3 is also connected to this SPI bus as slave device. This was
neglected to avoid unnecessary complexity.

8 Institute of Broadband Communications

-

L N N S N

[
S}

-
[

Bachelor Thesis 3 ESSENCE OF THE SOFTWARE INTERFACE

on the logic level at the enable connector, the physical pin acts as input or output as shown
in Table 5. It might be confusing that, for example, the output DPI_PBxx_0 yields the state
of the physical pin if it is configured as input. This naming convention becomes clear when
the flow of information in reference to the pin buffer is considered; the pin buffer outputs
the state of the physical pin to the SRU.

Pin enable Physical pin Active pin

(PBENxx_I) function buffer connector
HIGH Output DPI_PBxx_I
LOW Input DPI_PBxx_0

Table 5: Function table of the pin buffer enable state

This simplified description of pin buffers, where its mode of operation is “hard-wired”, is
sufficient for the problem at hand. More information on the function of the pin buffers, e.g.
how to use the the output signal of an interface to control the enable signal of a pin buffer,
is available in [9, ch. 6].

The principle behind the configuration of the SRU, and this includes the pin buffers, is that
each output has an assigned identifier and every input a dedicated configuration register'?.In
order to connect an output to an input, the identifier of the output has to be written to the
configuration register of the input. This task is supported by the macro SRU provided by
Analog Devices with VisualDSP++ in SRU.H [9, p. 6-42 ff.].

Listing 1: Syntax of the signal routing macro provided by Analog Devices

SRU(Output_Signal, Input_Signal);

The signal names follow the naming convention
PERIPHERAL_FUNCTION_DIRECTION

where e.g. “peripheral” is SPI, “function” is CLK and “direction” is 0 for output [9, p. 6-7].

Finally, the information gathered since the beginning of this chapter is combined. Table 2
specifies which physical pins of the DAI need to be configured and Figure 6b shows the
direction of data flow for each pin. Considering the naming convention for pin buffers
visible in Figure 7 and the function of the enable signal depicted in Table 5, the code to
configure the pin buffers using the SRU-macro from above can be derived.

Listing 2: Configuration of the pin buffers

// DPI_PO1: Output (MOSI)
SRU(HIGH, DPI_PBENO1_I);

// DPI_P02: Input (MISO)
SRU(LOW, DPI_PBEN02_I);

// DPI_P03: Output (Clock)
SRU(CHIGH, DPI_PBENO3_I);

// DPI_P04: Output (Device select for AD1835A)
SRU(CHIGH, DPI_PBEN04_I);

10 Additionally, the inputs and outputs are arranged in groups [9, p. 6-16 f.]. This will not be considered
to avoid unnecessary complexity.

Institute of Broadband Communications 9

© o N O v oA W N e

[
S

.

3 ESSENCE OF THE SOFTWARE INTERFACE Bachelor Thesis

3.2.3 Routing Signals between the Pin Buffers and SPI Port

Figure 5 illustrates that by configuring the pin buffers the physical pin is made available
to the “core” of the signal routing unit. All that is left to connect the control port of the
codec to the DSP is to route the signals from the pin buffers to the primary SPI port of the
DPI. The involved signals of the SPI port of the DSP are depicted in Figure 6b. Using the
information on pin buffers and the SRU-macro from the previous section, the code to route
the signals can be composed.

Listing 3: Routing of the SPI signals

// MOSI: SPI_MOSI_O -> DPI_P01 -> CIN
SRU(SPI_MOSI_O, DPI_PBO1_I);

// MISO: COUT -> DPI_P02 -> SPI_MISO_I
SRU(DPI_PB02_0, SPI_MISO_I);

// CLK: SPI_CLK_O -> DPI_P03 -> CCLK
SRU(SPI_CLK_O, DPI_PBO03_I);

// DS: SPI_FLG3_0 -> DPI_P04 -> CLATCH
SRU(SPI_FLG3_0, DPI_PBO04_I);

3.3 SPI Port Configuration on the DSP

Previously the connection between the DSP’s primary SPI port and the codec’s control port
was established. In addition to the bus architecture the SPI specification defines three at-
tributes for a connection, the clock rate, word length and mode. Therefore, the SPI port of
the DSP needs to be configured to conform to the settings required by the codec. Addition-
ally, some DSP-related settings of the SPI port have to be set. The complete configuration
of the primary SPI port is described by the content of three registers, the SPI control regis-
ter, SPI baud rate register and SPI port flag register. In the following the settings provided
by these registers are disussed and eventually the code for the configuration is presented.

3.3.1 SPI Control Register

The main part of the configuration of the primary SPI port is accessible through the SPI
control register SPICTL [9, p. A-140 ff.]. Tt consists of 18 different settings why only the
essential ones are discussed.

Each setting of the register has a short name. Along with VisualDSP++ Analog Devices
provides an ADSP-21369 specific header file def21369.h that defines constants of the same

name to be used for configuration. These short names will be introduced along with the
description of each setting for the code at the end of the section.

SPI Port Enable If the bit SPIEN is set, the SPI port is enabled, otherwise disabled.

SPI Master Select As mentioned in Section 3.2.1 the DSP has to act as master on the
SPI bus. Setting the SPIMS bit configures the primary SPI port as master.

Word Length In order to modify the content of a control register of the codec a 16 bit
data word has to be sent to its control port as described in Section 2.2. Therefore, the 2 bit
wide SPI bus word length code WL in SPICTL has to be set to WL16, specifying 16 bit word
length.

10 Institute of Broadband Communications

Bachelor Thesis 3 ESSENCE OF THE SOFTWARE INTERFACE

Clock Polarity and Clock Phase The SPI specification defines four modes by means of
the two-valued settings clock polarity and clock phase. The clock polarity specifies whether
the clock signal is active-low or active-high and the clock phase defines when the data is
put on the bus. Figure 19 in Appendix B provides the SPI transfer diagram for clock phase
CPHASE = 0 and clock polarity CLKPL = 0 and CLKPL = 1. By comparision with the SPI transfer
diagram of the AD1835A depicted in Figure 18 in Appendix A, the SPICTL settings CLKPL = 0
and CPHASE = 0 corresponding to SPI mode 0 are investigated'!. Thus, both bits, CLKPL and
CPHASE, are not set.

Most Significant Byte First The setting MSBF specifies if the most significant byte of
the data word is sent first. Figure 18 in Appendix A depicts that the control port of the
codec assumes that the byte order is big-endian, thus this bit has to be set.

Transfer Initiation Mode Basically there are two alternatives to manage the SPI com-
munication, direct memory access (DMA) provided by the I/O processor and core driven
operation. As the configuration of the codec only requires the occasional transfer of a hand-
ful of data words, DMA is not purposeful due to the additional configuration overhead and
negligible unloading of the core processor because of the small amount of transmitted data.
Therefore, core driven operation is used and DMA is not discussed further.

The transfer initiation mode setting TIMOD consists of two bits, whereas the more significant
bit selects between DMA (TIMOD2) and core driven (0) operation and the second bit defines
how a transfer is initiated in the core driven mode, by a request to send (TIMOD1) or receive
(0) a data word!2. The control registers of the codec are modified by sending data words to
its control port, therefore, the TIMOD1 mode is suited best for this task.

3.3.2 SPI Baud Rate Register

The SPI baud rate register SPIBAUD configures the clock rate of the SPI bus [9, p. A-148].
The bits 15 — 1 of SPIBAUD are named BAUDR and specify the divisor by which the SPI baud
rate fspr is related to the peripheral clock rate fpeik of the I/O processor. In master mode
this relation is given by Equation (1) [9, p. 12-6].

frewk
— < 1
Js1 = g BADR (1)
In order to determine BAUDR for a specific SPI baud rate fpcx needs to be known. The
peripheral clock rate fpcx is half the core clock rate feok, whereas the core clock is the
output of the phase-locked loop (PLL) (cf. Figure 20 in Appendix B).

_ Joo
Jeok = 5 (2)

The PLL is controlled via the power management control register PMCTL where INDIV con-
figures the input pre divider, PLLM the multiplier and PLLD the post divider [9, ch. 16]. The
details of the PLL configuration are beyond scope, thus only the necessary setting values
for the calculation of fcck are considered. However, the PLL is configured with PLLM = 27,
PLLD = 2 and INDIV = 0 which deactivates input pre divisor. The input clock rate fe iy of
the DSP is 24.576 MHz as shown on sheet 2 of the evaluation board schematic [6, app. B].
Utilizing this information and applying the equation for the core clock rate given in [5, p. 19]
(with feian = finpur) vields feok as depicted in Equation (3).
PLLM

27
= C— =24, MHz - — = 331. MH
feek = ferkan PLLD 576 Z 5 331.776 Z (3)

' More information about the SPT transfer modes is found in [10, ch. 8] and [9, ch. 12].
12Details on how the sending or receiving of a data word is requested is discussed in Section 3.4.

Institute of Broadband Communications 11

3 ESSENCE OF THE SOFTWARE INTERFACE Bachelor Thesis

By substituting Eq. (2) in Eq. (1), BAUDR can be expressed in dependence of fspr and feeik.
Considering that fspr specifies an upper limit for the SPI baud rate the relation in Equa-
tion (4) is derived.

fPCLK _ fCCLK = BAUDR > fCCLK (4)
8 -BAUDR 16 - BAUDR 16 - fspr

In the data sheet of the AD1835A a maximum serial bit clock frequency (— fspr) of 12.5 MHz
is specified for the control port [1, p. 13]. With Eq. (3) and Eq. (4) the valid range of values
for BAUDR is determined.

fspr >

feak 331776 MHz

BAUDR =
= 16 - fSPI 16 - 12.5 MHz

=166 = BAUDR > 2 (5)

An additional “safety margin” is added and the value (4)dec = (4)nex is chosen for BAUDR.
Considering that BAUDR begins at bit 1, the value (8)nex is written to SPIBAUD.

3.3.3 SPI Port Flag Register

In Section 3.2.1 it was already mentioned that the device select signals are called “flags” in
the context of the DSP’s SPI port. The flags of the primary SPI port are controlled by the
SPI port flag register SPIFLG, where each of the four flags has an assigned device select enable
(DSOEN — DS3EN) and device select control bit (SPIFLGO — SPIFLG3) [9, p. A-150 f.]. Therefore,
e.g. to enable the SPI port signal SPI_FLG3_0 (cf. Figure 5), i.e. the device select output
“flag 37, the bit DS3EN in SPIFLG has to be set. The state of this device select signal is then
controlled by the bit SPIFLG3. Considering that the device select signal is active low, the
slave is selected when the SPIFLG3 bit is cleared.

If CPHASE = 0 in SPICTL, which is the case in this configuration, all enabled device select
signals are controlled by the internal SPI hardware of the DSP. If a SPI transfer is initiated,
independent of the SPIFLGx bit all enabled device select signals are pulled low for the duration
of the transfer [9, p. 12-15 ff.].

Figure 6b depicts that flag 3 is used as device select signal for the AD1835A codec, conse-

quently, DS3EN needs to be set in SPIFLG. Additionally, for the sake of formality all SPIFLGx
bits are set to achieve a save initial state.

3.3.4 Configuration Process

Figure 1 shows that the registers of the I/O processor are memory-mapped, thus the pre-
viously discussed SPI port configuration registers are accessed via the data memory bus.
Before performing the configuration it has to be considered that the SPI configuration may
only be changed safely when some preconditions are fulfilled [9, p. 12-22].

1. There must not be any data transfer active.
2. No slaves may be selected.

3. The SPI port is disabled.

The means to check if a transfer is active and block execution until its completion are
presented in Section 3.4 and, therefore, it is only noted in the code shown below. How the
other prerequisites are accomplished was already implicitly mentioned. The device select
signals are disabled by clearing the DSxEN bits in SPIFLG and the SPI port is disabled by
clearing the SPIEN bit in SPICTL'3. The code of the complete configuration incorporating all

13When the SPI port is disabled the transmit and receive buffer is cleared, leading to a defined basis for
subsequent transfers.

12 Institute of Broadband Communications

T N N R S N

[
w N = O

-
'S

15

[

N

w

Bachelor Thesis 3 ESSENCE OF THE SOFTWARE INTERFACE

discussed settings and aspects of the execution sequence is listed below. Attention should
be paid to the modification of the SPI control register, enabling and disabling the SPI port
has to be separated from changing other settings in SPICTL.

Listing 4: Configuration of the primary SPI port of the DSP

// Wait for active data transfer to finish
// --> Discussed in the next section

// Disable SPI port: Clear SPIEN bit
r0 = dm(SPICTL);

r1 = ~SPIEN;

r0 = r0 and ri;

dm(SPICTL) = roO;

// Set the SPI baud rate
r0 = 0x8;
dm(SPIBAUD) = ro0;

// Disable all slave select lines (Clear DSxEN and set SPIFLGx)
r0 = SPIFLGO | SPIFLG1 | SPIFLG2 | SPIFLG3;
dm(SPIFLG) = roO;

// Configure the primary SPI port
r0 = TIMOD1 | // Trigger transfer by write request

WL16 | // 16 bit word length
MSBF | // Send most significant byte first
SPIMS; // Set to SPI master

dm(SPICTL) = ro;

// Enable the device select signal for the AD1835A
r0 = DS3EN | SPIFLGO | SPIFLG1 | SPIFLG2 | SPIFLG3;
dm(SPIFLG) = r0;

// Enable the SPI port: Set SPIEN bit
ro = dm(SPICTL);

ri SPIEN;

r0O = r0 or ri;

dm(SPICTL) = ro0;

3.4 SPI Communication

The SPI port is routed, configured and, consequently, ready for data transfers. In order to
initiate a transfer, an insight into the internal structure of the SPI port is necessary.

The primary SPI port contains a transmit and a receive shift register which are not directly
accessible. These registers serially transmit, respectively receive data synchronously with
the SPI clock signal. A shift register is written, respectively read by the associated transmit
data buffer TXSPI and receive data buffer RXSPI via the data memory bus as depicted in
Figure 8.

In Section 3.3 the transfer initiation mode was set to TIMOD = 01, defining core-driven oper-
ation of the SPI port whereas a transfer is initiated by the request to send a data word. A
request to send a data word is deposited by simply writing the data word into the transmit
data buffer TXSPI.

Listing 5: Transmission of a data word

// Example: Transmit the data word 0x1234
ro = 0x1234;
dm(TXSPI) = ro0;

Institute of Broadband Communications 13

[

© o N o

10

11

12

13

3 ESSENCE OF THE SOFTWARE INTERFACE Bachelor Thesis

SPI_MISO I SPI MOSI O SPI CLK O SPI FLGx O
A A A
Y
Receive Shift Transmit Shift SPI Control
Register Register Registers
A {
Y
RXSPI TXSPI SPISTAT
Receive Buffer Transmit Buffer Status Register
A
DM/PM Bus J \J \J

Figure 8: Internal structure of the primary SPI port in core-driven master mode

In core-driven SPI transfers, if a data word is written to TXSPI when another data transfer is
already active, the current buffer content is overwritten and the new data word is transferred,
leading to the corruption of the preceding data word. Therefore, a transmission may only
be initiated if no other transfer is active.

Information about the status of the primary SPI port is available through the read-only SPI
port status register SPISTAT [9, p. A-148 ff.]. Two bits thereof indicate the transmit transfer
status.

o TXS describes the TXSPI buffer status. This bit is set if the buffer is full and cleared if
the buffer is empty, i.e. it was emptied into the transmit shift register.

e SPIF describes the state of the transfer. This bit is cleared if a transfer is active, i.e.
data is shifted out of the transmit shift register'®, and set if the transfer is finished,
i.e. the transmit shift register is empty!%.

In order to assure that no transfer is active, TXS needs to be cleared and subsequently SPIF
to be set [9, p. 12-36 f.]. The program execution is blocked by subsequently polling these

flags until no transfer is active anymore!®.

Listing 6: Waiting for SPI transfer completion

// Wait for the TXS bit to be cleared
// => Transmit data buffer was emptied
testTXS:

ustatl = dm(SPISTAT);

bit tst ustatl TXS;
if TF jump testTXS;

// Wait for the SPIF bit to be set
// => Transmit shift register was emptied
testSPIF:
ustatl = dm(SPISTAT);
bit tst ustatl SPIF;
if not TF jump testSPIF;

14 Assuming that the transfer initiation mode is set to TIMOD = 01.
15The loops for polling were implementing using the JUMP instruction as the DO/UNTIL instruction does
not support bottom—controlled loops [7, p. 9-55].

14 Institute of Broadband Communications

S

w

© o N O v oA W N e

[
S}

-
.

Bachelor Thesis 3 ESSENCE OF THE SOFTWARE INTERFACE

Commonly, SPI slave devices require that a minimum wait time between successive word
transfers is maintained. Unfortunately, this is not specified in the data sheet of the AD1835A.
An indication for the magnitude of the wait time is given by the frame delay required by
the DSP’s SPI port if it is configured as a slave device, which is specified with 2 SPT clock
periods Tspr [9, p. 12-16]. On the basis of this specification, it is assumed that 4 SPI clock
periods are a sufficient wait time for the control port of the AD1835A codec.

This minimum wait time is achieved by a loop of no-operation instructions (NOP), whereas
each NOP takes one core clock cycle to execute. The number of core clock cycles to establish
the required wait time is determined by the ratio of the core clock rate fecx and the SPI
clock rate fspr. In conjunction with Eq. (1) and Eq. (2) from Section 3.3, the number Necik
of required core clock cycles is derived as shown in Equation (6), whereas T' = % denotes
the periodic time of the respective clock signal.

Newr — 2-Tspr 2 feax 4 feax 32-BAUDR: fepr
ok = = = = =
Teek fspr fsp1 fspr

—32-BAUDR = 32 -4 = 128 (6)

Consequently, the wait time between successive SPI data word transmissions is realized with
the code shown below.

Listing 7: Realization of the minimum wait time between successive transfers

// Wait minimum wait time between successive transfers
lcntr = 128, do waitTimelLoop until LCE;
waitTimelLoop: nop;

These are all means required for the successive transmission of data words. Additionally,
the transmission of a data word may also be used to receive a data word. Every time a
data word is transmitted, the data is sent through the (“virtual”) SPI_MOSI pin of the SPI
port. Synchronously, the data from the SPI_MISO pin is shifted into the receive shift register
of the SPI port. Therefore, every time a data word is transmitted, simultaneously a data
word is received. Analog to the TXS bit, the RXS bit in the SPI port status register SPISTAT
indicates when the receive buffer is full. In order to read the data word that was received
synchonously to the transmission of a data word on the primary SPI port, the RXS is polled
until it is set and afterwards the data word is read from the receive buffer RXSPI.

Listing 8: Receiving a data word via SPI with transfer initiation mode TIMOD = 01

// Here: Transmit data word and wait for transfer completion

// Wait for the RXS bit to be set
// => Receive data buffer is full
testRXS:

ustatl = dm(SPISTAT);

bit tst ustatl RXS;
if not TF jump testRXS;

// Read the data word from the primary SPI port receive data buffer
r0 = dm(RXSPI);

3.5 Representation of the Configuration

The communication channel to the control port of the AD1835A via the SPI is established.
For a convenient modification of the configuration of the codec some kind of representa-
tion thereof is necessary. The approach taken is to keep a mirrored version of the codec’s
configuration in the internal memory of the DSP.

As mentioned in Section 2.2, a control register of the codec is modified by sending a specific

Institute of Broadband Communications 15

3 ESSENCE OF THE SOFTWARE INTERFACE Bachelor Thesis

data frame to the codec’s control port. The basic structure of such a data frame is shown in
Figure 9. The four most significant bits contain the address of the target register, followed
by one bit declaring the type of operation (read or write). The ten remaining bits specify
the configuration which should be set, or, if a read operation is performed, they are ignored.
The exact composition of all data frames is available in Appendix A.

15 12 10 9 0

’ Address | R/W | Configuration |

Figure 9: Structure of a data frame for configuration

Instead of only storing the control register content in the memory of the DSP, a buffer
labeled _ad1835a_config_buffer is created in the data segment which contains a data word
for each data frame. The assignment of the data words of this configuration buffer to the
respective data frame is depicted in Table 6, where the offset from the base address of the
buffer is shown as well!®. Therefore, if a setting is changed in the configuration buffer, the
associated data frame is instantly available through the related data word and can be sent
to the codec.

Number Offset from Associated
base address control register

1 0 DAC Control 1

2 1 DAC Control 2

3 2 DAC Volume-Left 1
4 3 DAC Volume-Right 1
5 4 DAC Volume-Left 2
6 5 DAC Volume-Right 2
7 6 DAC Volume-Left 3
8 7 DAC Volume-Right 3
9 8 DAC Volume-Left 4
10 9 DAC Volume-Right 4
11 10 ADC Control 1

12 11 ADC Control 2

13 12 ADC Control 3

Table 6: Structure of the configuration buffer

The configuration buffer is initialized by setting the address-, R/W- and configuration-field
of each data word as depicted in Figure 9. The settings of the AD1835A codec are concisely
described in [1, p. 18] and a replication thereof is probably not worthwhile. However, in the
following some remarks will be given.

After a basic configuration is sent to the codec, access to its configuration is probably mostly
necessary to use the mute, volume, peak level information and maybe the power-down
feature. The DAC Control 2 and ADC Control 2 register enable the individual muting of
every DAC output and ADC input, whereas the eight DAC Volume Control registers provide
an individual volume control for every DAC output which will be utilized in Chapter 4.
Further, the AD1835A codec provides information about the peak input level of each ADC
via the two ADC Peak registers if peak readback is enabled in ADC Control 3. The ADC
Peak registers are somewhat special, as they are the only registers which are read. This is
the reason, why they do not appear in Table 6. How these registers are read will be discussed
in Section 3.6, whereas Chapter 4 presents an example of use.

In DAC Control 1 and ADC Control 2 the data format and word length for the serial ports
for the DAC and ADC data of the codec is configured. It should be kept in mind that these

16The data memory is addressed in 32-bit words. More information is available in [7, ch. 7].

16 Institute of Broadband Communications

Bachelor Thesis 3 ESSENCE OF THE SOFTWARE INTERFACE

settings have to conform to the settings of the DSP’s serial ports and, therefore, may not
be changed without further consideration.

3.6 Configuration of the Codec

Section 3.5 introduced the configuration buffer, which contains the data frames with the
desired configuration of the codec. In order to apply the configuration, these data frames
are sent to the codec’s control port by the means derived in Section 3.4.

This is accomplished by iterating through all data frames in the configuration buffer using
a data address generator (DAG) [7, ch. 6] of the processor, whereas each data frame is
synchronously sent and the minimum wait time between successive transfers is maintained.

1. Initiate the transmission by writing the data word into the transmit data buffer TXSPI.
2. Wait for the transfer to finish by polling the TXS and SPIF status bit.

3. Maintain the minimum wait time using a loop of NOP instructions.

Considering the configuration buffer name _ad1835a_config_buffer and the code fragments
from Section 3.4, the code to send the configuration can be formulated as shown below.
Individual data frames are sent similarly by only using the code from the loop body.

Listing 9: Transmission of the content of the configuration buffer to the codec

1 // Use the index and modify register 0 of DAG1 for buffer access

2 10 = _adl1835a_config_buffer; // Base address of the buffer

3 m0 = 1; // Increment address in steps of 1

4

5 // Loop through all data frames and send them to the AD1835A

6 lecntr = @_ad1835a_config_buffer, do sendCalibrationBufferLoop until LCE;
7

s // Read and transmit a data frame

9 ro = dm(i0, m0);

10 dm(TXSPI) = ro0;

11

12 // Wait for the TXS bit to be cleared
13 testTXS:

14 ustatl = dm(SPISTAT);

15 bit tst ustatl TXS;

16 if TF jump testTXS;

17

18 // Wait for the SPIF bit to be set

19 testSPIF:

20 ustatl = dm(SPISTAT);

21 bit tst ustatl SPIF;

22 if not TF jump testSPIF;

23

24 // Wait minimum wait time between successive transfers
25 lcntr = 128, do waitTimelLoop until LCE;
26 waitTimelLoop: nop;

27
2s sendCalibrationBufferLoop: nop;

The considerations and the code presented at the end of Section 3.4 is used to read the
content of an ADC Peak register'”. The sequence of actions required to achieve the reading
of a peak register with the transfer initation mode configured in Section 3.3 is as follows.

17 Assuming that peak readback is enabled in ADC Control 3.

Institute of Broadband Communications 17

3 ESSENCE OF THE SOFTWARE INTERFACE Bachelor Thesis

1. Send a data frame to the codec which contains the address of the desired ADC Peak
register in the address-field and where the R/W bit set. The configuration field of the
data frame is ignored. Thereupon the codec transfers the value of the addressed peak
register into its transmit shift register and resets the peak register for a new peak level
determination.

2. Send a dummy data frame, e.g. an arbitrary data frame from the configuration buffer,
to the codec to shift the data from the codec’s transmit shift register into the receive
shift register of the primary SPI port of the DSP.

3. Poll the RXS status bit until it is set and, therefore, the receive data buffer is full.

4. Read the receive data buffer RXSPI to obtain the peak value.

As the clue of reading the peak registers lies in the sequence of the individual steps but does
not introduce any new aspects regarding the code, no listing is included.

3.7 Summary

This chapter described the fundamental steps required to configure an AD1835A codec
chip on an ADSP-21369 signal processor brought together via an ADSP-21369 EZ-KIT
Lite® evaluation board and illustrated the principles of the involved hardware. Starting
from the connections on the printed circuit board, the signals of the control port of the
codec were traced to the DPI of the DSP and routed to the DSP’s primary SPI port by
programming the SRU. The SPI port was configured to comply to the requirements of the
codec and the means for communication were established, incorporating the issues which
evolve when successive transfers are performed. Subsequently, a representation of the codec’s
configuration was introduced to finally carry out the configuration, bringing together all
developed components.

The actual software interface uses the knowledge presented above as building blocks for a set
of constants, macros and subroutines to provide convenient means to alter the configuration
of the codec and read the content of its peak level registers. In Appendix C the essential
source code is listed and its integration is explained. A detailed discussion of the internal
structure of the software interface would go beyond the scope, however, with the information
in this chapter its functionality should be comprehensible.

4 Applications

Chapter 3 discussed the configuration of the AD1835A codec using the primary SPI port of
the DSP in-depth. The chapter concluded with the introduction of the software interface
presented in Appendix C which provides convenient means to configure the codec. This
chapter concisely demonstrates two examples of use to illustrate the practical aspect of the
configuration as well.

The starting point for these examples is the project “Talkthrough” provided in the DAL
course referred to in Chapter 1. That code in turn is derived from the project “Talkthru
Analog In-Out (ASM)” provided by Analog Devices with VisualDSP++ included in the
ADSP-21369 EZ-KIT Lite®.

4.1 Volume Control

The evaluation board offers four general-purpose push buttons, whereas the push buttons PB1
and PB2 are connected to the flag-pins FLAG1 and FLAGO of the DSP which can be configured
as interrupt inputs IRQT and IRQO [6, p. 1-12], [9, p. 17-27 fI.], [7, p. 4-29 fI.]. These two
push buttons are utilized to realize a linear volume control. The output volume of all DACs

18 Institute of Broadband Communications

AW N e

© ®w N o o

10

11

12

13

14

15

16

17

18

19

© o N O oA W N e

e e e e
[S T R R S,

[
o

Bachelor Thesis 4 APPLICATIONS

is increased (PB1) and decreased (PB2) by modifying the DAC Volume Control registers
of the codec using the software interface discussed in Chaper 3. Therefore, the interrupt
vector table (IVT) is supplemented with two additional interrupt service routines (ISR) [7,
app. C], _push_button_2_isr for IRQ1 and _push_button_1_isr for IRQ0, which perform the
reconfiguration of the codec.

Instead of a detailed discussion some code excerpts are listed below that illustrate the
underlying principles. Nonetheless, two aspects should be emphasized. Sheet 5 of the
evaluation board’s schematic [6, app. B] depicts the circuit of the push buttons which reveals
that a logical low is ouput in the unpressed state. Considering that the interrupt inputs
are active-low, their interrupt sensitivity has to be configured for edge-sensitivity, as level-
sensitivity would implicate a constant triggering of the interrupt. Further, interrupt nesting
has to be disabled [7, p. 4-43 fI.], as otherwise the push button ISRs and the audio sample
ISR, which implements the talkthrough by reading a sample from the ADCs and outputting
them on the DACs, might interfere.

Listing 10: Configuration of the interrupt inputs IRQ0 and IRQ1

// Disable nested interrupts
bit clr model NESTM;

// Enable interrupt mode for FLAGO and FLAGI
ustatl = dm(SYSCTL);

bit set ustatl IRQOEN | IRQTEN;

dm(SYSCTL) = ustatl;

// Select edge-sensitivity for IRQO and IRQ1
bit set mode2 IRQOE | IRQIE;

// Clear the interrupt latch register for IRQO and IRQ1
bit clr irptl IRQOI | IRQ1I;

// Unmask the interrupt IRQO and IRQT
bit set imask IRQOI | IRQ1I;

// Enable interrupts (globally)
bit set model IRPTEN;

In the interrupt service routines of the push buttons the volume of all DACs is adjusted,
whereas the representative volume setting is taken from DAC1 left. The following listing
depicts the ISR for the push button PB1. The ISR for push button PB2 is similar, except that
the volume is decremented and the lower bound is checked.

Listing 11: Interrupt service routine for the push button PB1

_push_button_1_isr:

// Get current volume setting from configuration buffer
r14 = dm(AD1835A_REG_DACVOLTL);

r15 = AD1835A_DACVOL_MAX;

ri4 = r14 and ri5;

// Increase volume by 1024/10 ~= 102
ri3 = 102;
ri4 = r14 + ri3;

// Check if volume is above maximum
ri3 = r15 - ri14;
if GE jump vol_below_max;

ri4 = AD1835A_DACVOL_MAX;
vol_below_max:

Institute of Broadband Communications 19

17

18

19

20

21

22

23

24

25

26

27

28

29

1< B S

4 APPLICATIONS Bachelor Thesis

// Set volume on all outputs

ad1835aSetVolume (DACVOL1L, ri14);
ad1835aSetVolume (DACVOLIR, ri14);
ad1835aSetVolume (DACVOL2L, ri14);
ad1835aSetVolume (DACVOL2R, ri14);
ad1835aSetVolume (DACVOL3L, ri14);
ad1835aSetVolume (DACVOL3R, ri14);
ad1835aSetVolume (DACVOL4L, ri14);
ad1835aSetVolume (DACVOL4R, ri14);

_push_button_1_isr.end:
rti;

4.2 Input Level Meter

The evaluation board provides eight general-purpose light-emitting diodes (LED) connected
to the DAI, DPI and FLAG3 pin of the DSP [6, p. 1-12 f.], which allure to realize an ADC
input level meter using the peak level information provided by the codec. Therefore, the
LEDs are routed and a timer interrupt is set up, whereas in the timer ISR the peak level of
both ADCs is read and visualized using the LEDs.

Due to the fact that the LEDs are connected to diverse interfaces of the DSP, their routing
and control is not that trivial. LED8 is connected to the flag 3 pin of the DSP which is
controlled through the Flag I/O register if it is configured as an output in “flag-mode” [9,
p. 17-27 f1.], [7, p. B-18 ff.]. LED1 to LED5 are connected to the DPI and, therefore, may be
routed to the I/O flags as well, which is visible in Figure 5. LED6 and LED7 are connected to
the DAI, whereas the DAI does not offer a general-purpose register. For this reason these
two LEDs are controlled by routing the desired logical level to their pin buffer input using
the SRU. The code to accomplish the control of the LEDs is shown in Appendix C.

The timer of the DSP, described in [7, ch. 5], is configured by setting the timer count TCOUNT
and the timer period TPERIOD. TCOUNT is decremented by one during each clock cycle. If
TCOUNT reaches zero, an interrupt is generated and TCOUNT is reset to TPERIOD. For example,
by utilizing Equation (3) from Section 3.3, the number of clock cycles for TPERIOD to set
up a timer interrupt with an interval time of Tinterval = 0.1s is determined as shown by
Equation (7).

TPERIOD = Tinterval - feok = 0.1s-331.776 MHz = 33177600 (7)

The timer generates a low priority (TMZLI) and a high priority (TMzHI) interrupt, whereas the
latter is used'®. A timer ISR _timer_isr was created and assigned to TMZHI in the interrupt
vector table.

Concluding, some code excepts are depicted that illustrate the essence of the input level
meter. The steps listed hereafter are performed during the startup to route and initialize
the LEDs, as well as to configure and start the timer. The macros ledInitialize() and
ad1835aModifySetting() are part of the software interface listed in Appendix C'°.

Listing 12: Routing of the LEDs and configuration of the timer

// Initialize and route the general -purpose LEDs
ledInitialize();

// Enable peak level readback on AD1835A
ad1835aModifySetting (ADCPEAKRB, ON);

18The low priority timer interrupt frequently did not get serviced, why the high priority interrupt was
chosen.
9Prior to these steps the PLL, serial ports, SPI port and the AD1835A codec have to be initialized.

20 Institute of Broadband Communications

© ® N o

11

12

13

14

16

17

19

20

21

22

23

24

25

26

N T N N

Bachelor Thesis 5 CONCLUSION

// Disable nested interrupts
bit clr model NESTM;

// Counter start value (start with immediate interrupt)
tcount = 0;

// Counter period in core clock cycles
tperiod = TIMER_PERIOD;

// Enable timer interrupt
bit set mode2 TIMEN;

// Clear latched high priority timer interrupt
bit clr irptl TMZHI;

// Unmask high priority timer interrupt
bit set imask TMZHI;

// Enable interrupts (globally)
bit set model IRPTEN;

In the following the ISR for the timer interrupt is shown. The macro ad1835aUpdatelLevelMeter()
reads the peak level registers of the codec and sets the LEDs of the evaluation board ac-
cordingly, whereas the LED5 — LEDS is used for the left ADC and LED1 — LED4 for the
right ADC. Its code is listed in Appendix C?°.

Listing 13: Interrupt service routine for the timer interrupt

_timer_isr:

// Update the ADC input level meter
ad1835aUpdatelLevelMeter ();

_timer_isr.end:
rti;

5 Conclusion

In this thesis the configuration of the AD1835A audio codec chip in the context of the ADSP-
21369 EZ-KIT Lite® evaluation board was discussed in-depth, whereas the involved hardware
was thoroughly explored to reason and prove the correctness of every taken step. Further,
two examples of use were introduced to illustrate the practical aspects of the configurable
features of the codec. Moreover, these examples provided a platform for the comprehensive
testing of the software interface, which exhibited a faultless operation.

This brings up the question why the code used in the DAL course mentioned in Chapter 1
occasionally exhibited erroneous behavior. That code is very rudimental and partially omits
the checking of prerequisites. Considering that it is only executed once immediately after
startup, this is not that dramatic. However, when its loop for sending the data frames
is compared to the one presented in Section 3.6 a subtle difference can be noticed. The
completion of a transfer is checked by only polling the SPIF bit which indicates if the transmit
shift register is empty, whereas the TXS bit, specifying if the content of the transmit data
buffer was emptied into the transmit shift register, is ignored. The exact moment when the
transmit data buffer is emptied into the transmit shift register is not specified in the hardware
reference, while it probably depends on the current status of the SPI clock. Anyway, it may

20The thresholds for the LEDs are specified by the constant LEVEL_THRES_STEP defined in ad1835a.h.

Institute of Broadband Communications 21

BIBLIOGRAPHY Bachelor Thesis

occur that the first check of the SPIF bit is performed before the transmit data buffer was
emptied into the transmit shift register and, consequently, the program assumes that the
current transfer was finished and continues to transmit the next data frame. Therefore, the
previous data frame is overwritten and lost, ending in the fact that those modifications of
the configuration do not take effect.

Concluding, this thesis provided an introduction to the rather complex, yet flexible and
efficient mechanism of peripheral communication using the ADSP-21369 digital signal pro-
cessor. The aim of the thesis, the configuration of the AD1835A audio codec chip, yielded
a convenient tool which was able to eliminate the existing problems and will hopefully find
its way into practical use, being a helpful assistant in the utilization of the ADSP-21369
EZ-KIT Lite® evaluation board.

Bibliography

[1] Analog Devices Inc., Norwood. AD1835A Data Sheet, Revision A, Dec. 2003. http:
//www.analog.com/static/imported-files/data_sheets/AD1835A. pdf.

[2] Analog Devices Inc., Norwood. ADSP-21368 SHARC® Processor Hardware Reference,
Revision 1.0, Sept. 2006.

[3] Analog Devices Inc., Norwood. ADSP-2136z SHARC® Processor Programming Refer-
ence, Revision 1.1, Mar. 2007.

[4] Analog Devices Inc., Norwood. VisualDSP++ 5.0 User’s Guide, Revision 3.0,
Aug. 2007. http://www.analog.com/static/imported-files/software_manuals/
719705850_ug. pdf.

[5] Analog Devices Inc., Norwood. ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet,
Revision E, Jul. 2009. http://www.analog.com/static/imported-files/data_sheets/
ADSP-21367_21368_21369. pdf.

[6] Analog Devices Inc., Norwood. ADSP-21369 EZ-KIT Lite® Evaluation System Manual,
Revision 2.2, Sept. 2009. http://www.analog.com/static/imported-files/eval_kit_
manuals/ADSP-21369%20EZ-KIT%20L1ite%20Manual%20Rev%202.2. pdf.

[7] Analog Devices Inc., Norwood. SHARC® Processor Programming Reference, Revision
2.0, Jun. 2009. http://www.analog.com/static/imported-files/processor_manuals/
ADSP_2136x_PGR_rev2-0.pdf.

[8] Analog Devices Inc., Norwood. VisualDSP++ 5.0 Assembler and Preprocessor Manual,
Revision 3.3, Sept. 2009. http://www.analog.com/static/imported-files/software_
manuals/50_asm_man_3.3.pdf.

[9] Analog Devices Inc., Norwood. ADSP-2137x SHARC® Processor Hardware Reference,
Revision 2.1, May 2010. http://www.analog.com/static/imported-files/processor_
manuals/ADSP-21367_hwr_rev2-1.pdf.

[10] Freescale Semiconductor Inc. M68HC11 Reference Manual, Revision 6.1, 2007. http:
//www.freescale.com/files/microcontrollers/doc/ref_manual/M68HC11RM. pdf.

22 Institute of Broadband Communications

Bachelor Thesis A EXCERPTS OF THE AD1835A DATA SHEET

A Excerpts of the AD1835A Data Sheet

A.1 Data Frames associated with the Registers

Register Address Register Name Description Type Width Reset Setting (Hex)
0000 DACCTRLI DAC Control 1 RW 10 000
0001 DACCTRL2 DAC Control 2 RW 10 000
0010 DACVOLI1 DAC Volume-Left 1 RW 10 3FF
0011 DACVOL2 DAC Volume-Right 1 RW 10 3FF
0100 DACVOL3 DAC Volume-Left 2 RW 10 3FF
0101 DACVOLA4 DAC Volume-Right 2 RW 10 3FF
0110 DACVOL5 DAC Volume-Left 3 RW 10 3FF
0111 DACVOLG6 DAC Volume-Right 3 RW 10 3FF
1000 DACVOL7 DAC Volume-Left 4 RW 10 3FF
1001 DACVOLS DAC Volume-Right 4 RW 10 3FF
1010 ADCPeak0 ADC Left Peak R 6 000
1011 ADCPeakl ADC Right Peak R 6 000
1100 ADCCTRLI ADC Control 1 RW 10 000
1101 ADCCTRL2 ADC Control 2 RW 10 000
1110 ADCCTRL3 ADC Control 3 RW 10 000
1111 Reserved Reserved RW 10 Reserved
Figure 10: Control Register Map [1, p. 19]
Function
DAC Data DAC Data- Power-Down
Address R/W | RES | De-emphasis | Format Word Width | Reset Sample Rate
15,14,13,12 |11 |10 |9,8 7,6,5 4,3 2 1,0
0000 0 0 00 = None 000 =I%S 00 = 24 Bits 0 = Normal 00 = 8 X (48 kHz)
01 =44.1 kHz | 001 = RJ 01 = 20 Bits 1 = Power-Down |01 = 4 X (96 kHz)
10 = 32.0 kHz | 010 = DSP 10 = 16 Bits 10 = 2 X (192 kHz)
11=48.0kHz | 011 = L] 11 = Reserved 11 =8 X (48 kHz)
100 = Packed 256
101 = Packed 128
110 = Reserved
111 = Reserved

Figure 11: DAC Control 1 [1, p. 19]

Function
MUTE DAC
Stereo

Address | R’'W |RES | Reserved | Replicate OUTR4 |OUTL4 | OUTR3 |OUTL3 |[OUTR2 [OUTL2 |[OUTR1 |OUTLI1

15, 14,

13,12 11 10 |9 8 7 6 5 4 3 2 1 0

0001 0 0 0 0= Off 0=0On [0=0On |0=On |[0=0On [(0=0On |0=On |(0=On |[0=On

1 = Replicate | 1 = Mute | 1 = Mute| 1 = Mute | 1 = Mute| 1 = Mute | 1 = Mute | 1 = Mute| 1 = Mute
Figure 12: DAC Control 2 [1, p. 19]
Function
Address RIW RES | DAC Volume Function
Four Fixed

114,13, 12 | 1 0 19%87654321,0 Address R/W|RES | Six Data Bits | Bits
0010 = DACL1 0 0 0000000000 = Mute
0011 = DACR1 0000000001 = 1/1023 1514, 13,12 1 10 87,654 %210
0100 = DACL2 0000000010 = 2/1023 1010 = Left ADC | 1 0 000000 = 0.0 dBFS {0000
0101 = DACR2 1111111110 = 1022/1023 1011 = Right ADC 000001 =-1.0 dBFS
0110 = DACL3 1111111111 = 1023/1023 000010 = -2.0 dBFS | These four
0111 = DACR3 111111 =-63.0 dBFS | bits are
1000 = DACL4 always zero.
1001 = DACR4
Figure 13: DAC Volume Control [1, p. 20] Figure 14: ADC Peak [1, p. 20]

Institute of Broadband Communications 23

A EXCERPTS OF THE AD1835A DATA SHEET

Bachelor Thesis

Function
o ADC Sample
Address RIW RES RES Filter Power-Down Rate Reserved
15, 14, 13, 12 11 10 9 8 7 6 5,4,3,2,1,0
1100 0 0 0 0 = All Pass 0 = Normal 0 =48 kHz 0,0,0,0,0,0
1 = High-Pass 1 = Power-Down 1 =196 kHz 0,0,0,0,0,0
Figure 15: ADC Control 1 [1, p. 20]
Function
RIW Master/Slave | ADC ADC Data- ADC MUTE
Address RES | RES | Aux Mode Data Format Word Width Reserved | Right Left
15,14, 13,12 | 11 10 9 8,7,6 5,4 3,2 1 0
1101 0 0 0 = Slave 000 = I°S 00 = 24 Bits 0,0 0=0n 0=0n
1 = Master 001 =RJ 01 = 20 Bits 1 = Mute 1 = Mute
010 = DSP 10 = 16 Bits
011 =1] 11 = Reserved
100 = Packed 256
101 = Packed 128
110 = Auxiliary 256
111 = Auxiliary 512
Figure 16: ADC Control 2 [1, p. 20]
Function
RIW IMCLK ADC DAC ADC
Address RES |RES |Reserved|Clocking Scaling | Peak Readback Test Mode Test Mode
15, 14, 13, 12 |11 10 |9 8,7,6 5 4,3,2 1,0
1110 0 0 0,0 00 = MCLK X 2 |0 = Disabled Peak Readback |000 = Normal Mode (00 = Normal Mode
01 = MCLK 1 = Enabled Peak Readback |All others reserved All others reserved
10 = MCLK X 2/3
11 = MCLK X 2

Figure 17: ADC Control 3 [1, p.

A.2 SPI Transfer Diagram

CLATCH

20]

ten

> & teors

X2 X

D

Figure 18: SPI transfer diagram of the AD1835A control port [1, p. 12]

24

Institute of Broadband Communications

Bachelor Thesis B EXCERPTS OF THE ADSP-21369 DOCUMENTATION

B Excerpts of the ADSP-21369 Documentation

B.1 SPI Transfer Diagram

CLOCK CYCLE#

SPI_CLK_O
CLKPL=0
(SPI MODE 0)

SPI_CLK_O
CLKPL=1
(SPI MODE 2)

SPI_MOSI_O
FROM MASTER

|

SPLMSOl —{ wss_ Y 6
FROM SLAVE

1 |
SPLFLGI N\ '

| t

1 |

1 |

)'KLSB)K*)—

I
I
FROM MASTER t
I

Xmss X 6 X 5 X 4 X 3 X 2
X

X1)(LSBXI*
X3 X

- =4 - =l
[N ES
- —d - =N

* = UNDEFINED

Figure 19: SPI transfer diagram for CPHASE = 0 [9, p. 12-14]

B.2 Clock Relationship to the Input Clock

PMCTL
(SDCKR)
PMCTL

PLL (PLLBP)
f -
CLKIN CLKIN | finput LOOP Veo | o) x| CCLK | SDRAM ‘
DIVIDER ™ FiLter [™ V6O [+ (pviDer > 2 ™| DIVIDER
f
XTAL y CLK
e f PMCTL
(2xPLLD)
PMCTL PLL PMCTL »| DIVIDE

(INDIV) MULTIPLIER [(PLLBP) BY 2

\i

BYPASS

CLK_CFGx/PMCTL (2xPLLM)

» CCLK

CLKOUT (TEST ONLY)

DELAY OF
— 4096 CLKIN >
CYCLES

Y

Figure 20: Clock relationship to the input clock [5, p. 19]

C Source Code

C.1 Embedding the Software Interface into a Project

The software interface is embedded into a project by adding the files spi.h, spi.asm, ad1835a.h
and ad1835a.asm to the project directory. Both header files have to be included in the
assembler file of the startup routine (e.g. main.asm) and the initialization macros must be
called in the startup routine as shown below.

Institute of Broadband Communications 25

-

M)

I

o

-

N

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

C SOURCE CODE Bachelor Thesis

// Initialize the primary SPI port and SRU for its DPI pins
spiInitPrimary();

// Initialize the AD1835A codec
ad1835Initialize();

The configuration of the codec may then be accessed using the macros provided by ad1835a.h.
If the configuration has to be permantently changed, this may be done by altering the initial
configuration defined in ad1835a.asm.

In order to utilize the input level meter discussed in Chapter 4, the files led.h and led.asm
have to be added to the project directory. The LEDs are routed and initialized by applying
the macro shown below.

// Initialize and route the general -purpose LEDs
ledInitialize();

C.2 Signal Routing, SPI Configuration and Communication

C.2.1 spi.h

/******‘k***
* File: spi.h

This file provides macros for SPI port initialization,
configuration and data transfer.
Currently, all macros work on the *xPRIMARY* SPI port.

Revisions:
2010-05-03, Matthias Hotz: Initial version
2010-06-01, Matthias Hotz: Added receive data buffer readout

T

*

KA KA A A A A A A A A AR KA A A A A A A A A A A A A A AR KA AR AR A A A A A A A A A Ak Ak ko ko ko ko ko kkhkhkhkhkkkkk */
#ifndef _SPI_H_
#define _SPI_H_

#include <def21369.h>
#include <sru.h>

.extern _spi_init_primary;

.extern _spi_configure;

.extern _spi_send_data_buffer;
.extern _spi_send_data_word;

.extern _spi_send_data_word_and_wait;
.extern _spi_read_recv_data_buffer;

R R R R R R R R R R R R R L

* MACROS
B T T T

// Macro for initialization of the primary SPI port
#define spilInitPrimary() \
call _spi_init_primary;

e
// Macro for configuration of the primary SPI port
/7
// Parameters:
// ctl_reg Data word for SPICTL register (SPIEN must not be set)
// baud_reg ... Data word for SPIBAUD register
/7
#define spiConfigure(ctl_reg, baud_reg) \
r5 = ctl_reg; \
ré = baud_reg; \
call _spi_configure;
[(] >=mmemeoocccooooooooo0onoooo0000 0000000 Coo0DoCCoD0o0So000000000

// Macro to transmit the content of a buffer via the primary SPI
// port (Synchronous transfer)

26 Institute of Broadband Communications

54

56

58

60

62

64

66

68

70

T2

T4

76

78

80

82

84

86

88

90

92

94

96

98

100

102

10

12

14

16

18

N

0

22

24

26

Bachelor Thesis

C SOURCE CODE

//
// Parameters:
// buf_addr ... Start address of the buffer
// buf_len Numer of data words in the buffer
//
#define spiSendDataBuffer (buf_addr, buf_len) \
r5 = buf_addr; \
ré = buf_len; \
call _spi_send_data_buffer;
/(] ====meccccmomoooooooonoosoosoooooocooDEoEDoo000D0SSoSooSDDEoDo00

// Macro to transmit one data word via the primary SPI port. The
// call is blocking, it does not return until the data word was

// completely transmitted.
//
// Parameters:
// dw ... Data word to transmit
//
#define spiSendDataWord(dw) \
ro = dw; \
call _spi_send_data_word;
A e e ML L

// Macro to transmit one data word via the primary SPI port

// (blocking) and wait the minimum wait time between successive
// transfers. (This subroutine can be used if some data words
// should be transmitted successively).

//
// Parameters:
// r0 ... Data word to transmit
//
#define spiSendDataWordAndWait (dw) \
ro = dw; \
call _spi_send_data_word_and_wait;
A e e e

// Macro to read one data word from the receive data buffer of
// the primary SPI port. Program execution is blocked until the
// receive data buffer is filled before readout.

// Return Value:
// r0 ... Received data word

#define spiReadRecvDataBuffer () \
call _spi_read_recv_data_buffer;

#endif
C.2.2 spi.asm

/**
* File: spi.asm

This file provides subroutines for SPI port initialization,
configuration and data transfer.

Currently, all subroutines work on the *PRIMARY* SPI port.
However, except the init- and route-subroutines all sub-
routines would be adaptable to support both SPI ports (e.g.

by passing the register addresses SPICTL/SPICTLB, etc. using

a processor register). Due to the fact that only the primary
SPI port is in use, this generalization would only degrade the
readability of the code, hence it was not implemented.

Revisions:
2010-05-03, Matthias Hotz: Initial version
2010-06-01, Matthias Hotz: Added receive data buffer readout

¥ %k %k % % % Ok Ok X % %k Ok F ¥ %

B R R R R R R R R R R R R R R T)

#include <def21369.h>
#include <sru.h>

.global _spi_init_primary;

.global _spi_configure;

.global _spi_send_data_buffer;
.global _spi_send_data_word;

.global _spi_send_data_word_and_wait;

Institute of Broadband Communications

27

28

30

32

34

36

38

40

42

44

46

48

50

54

56

58

60

62

64

66

68

72

74

76

78

80

82

84

86

88

90

92

96

98

100

102

104

106

108

C SOURCE CODE

Bachelor Thesis

.global _spi_read_recv_data_buffer;

// Between two successive transfers on the SPI port a minimum

// wait time is required. This is defined here as four SPI clock
// periods which is for this configuration the below specified
// number of core clock cycles

#define WAIT_CCLK_CYCLES 128

/**********k******************************k************************
* GLOBAL SUBROUTINES

KKK KA KR A AR A AR A AR A AR A AR A AR KA R A AR A A AR A AR A AR R AR AR ARk A ARk kA Ak Ak khkk k% */
.section/pm seg_pmco;

// Initialize the primary SPI port: Route signals, set
// configuration and baud rate
_spi_init_primary:

// Initialize the signal routing unit regarding the primary
// SPI port
call _spi_route_primary;
// Configure the primary SPI port
r5 = TIMOD1 | // Trigger transfer by write to TXSPI
WL16 | // 16 bit word length
MSBF | // Send most significant byte first
SPIMS; // Set to SPI master
ré6 = 0x8;
call _spi_configure;
_spi_init_primary.end:
rts;
L Attt e OOt
// Configure the primary SPI port
/7
// Parameters:
// r5 ... Data word for SPICTL register (SPIEN must not be set)
/7 ré ... Data word for SPIBAUD register
/7
_spi_configure:
// Disable the SPI port before changing its configuration
call _spi_disable;
// Set the SPI baud rate
dm(SPIBAUD) = r6;
// Backup the SPI port flag register and disable all devices
r2 = dm(SPIFLG);
ro = SPIFLGO | SPIFLG1 | SPIFLG2 | SPIFLG3;
dm(SPIFLG) = ro0;
// Configure the SPI port via its control register
dm(SPICTL) = r5;
// Enable the SPI port
r1 = SPIEN;
r0 = r5 or ri;
dm(SPICTL) = ro0;
// Restore the SPI port flag register
dm(SPIFLG) = r2;
_spi_configure.end:
rts;
A
// Send all data words of a specified buffer via the primary SPI
// port
//
// Parameters:
// r5 ... Start address of the buffer
/7 ré ... Numer of data words in the buffer
/7
_spi_send_data_buffer:
// Use the index and modify reg. 0 of DAG1 for buffer access

i0 = r5;

28 Institute of Broadband Communications

112

114

116

118

126

128

130

132

138

140

142

144

146

148

168

170

172

174

176

180

182

184

186

188

190

Bachelor Thesis

C SOURCE CODE

mo0 = 1;

// Loop through all data words and send them
lcntr = r6, do spiSendDataBufferLoop until LCE;

// Read and transmit the data word (synchronous)
r0 = dm(i0, m0);
call _spi_send_data_word;

// Wait minimum wait time between successive transfers
lcntr = WAIT_CCLK_CYCLES, do intermedWaitTimeSDB until LCE;
intermedWaitTimeSDB: nop;

spiSendDataBufferLoop: nop;

_spi_send_data_buffer.end:

// Send one data word via the primary SPI port. The subroutine
// is blocking, it does not return until the data word was
// completely transmitted.

//

// Parameters:

// r0 ... Data word to transmit
//

_spi_send_data_word:

// Transmit the data word
dm(TXSPI) = r0;

// Wait for transmit tranfer to be finished
call _spi_wait_for_transmit_completion;

_spi_send_data_word.end:
rts;

// Send one data word via the primary SPI port synchronously and
// wait minimum wait time between successive transfers afterwards
// (This subroutine can be used if some data words should be

// transmitted successively).

//

// Parameters:

// r0 ... Data word to transmit
/7

_spi_send_data_word_and_wait:

// Send data word synchronously
call _spi_send_data_word;

// Wait minimum wait time between successive transfers
lcntr = WAIT_CCLK_CYCLES, do intermedWaitTimeSDW until LCE;
intermedWaitTimeSDW: nop;

_spi_send_data_word_and_wait.end:
rts;

// Wait until the receive data buffer of the primary SPI port is
// full and store the received data word in the register RO.

// (Attention: This call blocks program execution if the receive
// buffer is empty and no SPI transfer is active)

//

// Return Value:

// r0 ... Received data word
//

_spi_read_recv_data_buffer:

// Wait for the RXS bit to be set
// => Receive data buffer is full
testRXS:

ustatl = dm(SPISTAT);

bit tst ustatl RXS;
if not TF jump testRXS;

// Read the data word from the primary SPI port receive buffer
ro = dm(RXSPI);

Institute of Broadband Communications

29

C SOURCE CODE Bachelor Thesis

192 _spi_read_recv_data_buffer.end:
rts;
194

IR R R Rk kR R R

* LOCAL SUBROUTINES
198 KA KKK AKKAKKKRKKRAKRAKARA KK KA KKK KKK KKK KKK KA KA KR KR KRARK KK KA KA KKK XKk K %/

B e
// Route the primary SPI port to DPI_P01 - DPI_P03 and the device
202 // select signal for the AD1835A to DPI_PO04.
_spi_route_primary:

// Master data output

206 SRU(SPI_MOSI_O, DPI_PBO1_I);
SRU(HIGH, DPI_PBENO1_I);

208
// Master data input

210 SRU(DPI_PB02_0, SPI_MISO_I);
SRU(LOW, DPI_PBEN02_I);

212
// Master clock output

214 SRU(SPI_CLK_O, DPI_PB03_I);
SRU(HIGH, DPI_PBEN03_I);

216
// Device select output for AD1835A

218 SRU(SPI_FLG3_0, DPI_PB04_I);
SRU(HIGH, DPI_PBENO4_I);

rts;
222

B e
// Disables the primary SPI port. If a transfer is active the

226 // subroutine waits for it to finish before disabling the port.
_spi_disable:

228
// If any transmit transfer is active wait for it to finish
230 call _spi_wait_for_transmit_completion;
232 // Disable primary SPI port (and implicitly clear the
// transmit and receive buffer as well as the DMA FIFO buffer
234 // status)
r0 = dm(SPICTL);
236 r1 = ~SPIEN;
r0 = r0 and ri;
238 dm(SPICTL) = rO;
240 rts;
242
[/ == m o m oo oo

244 // Wait until a transmit transfer on the primary SPI port is
// finished
246 _spi_wait_for_transmit_completion:

248 // Check if the DMA transfer mode is active and if so, wait

// for the DMA FIFO buffer to be emptied
250 r0 = dm(SPICTL); // Read SPI control register

r1 = TIMOD2 | TIMODI1; // Mask for transfer mode
252 ro = r0 and ri; // Extract transfer mode

r1 = TIMOD2; // TMOD setting for DMA
254 r0 = r0 xor ri; // Check for equality

if NE jump notDMA;
256

// Transfer initiation mode is DMA, so wait for DMA FIFO
258 // to empty. Status 00 indicates that the DMA FIFO is empty.
260 rl = SPIS1 | SPISO; // Mask for DMA FIFO status
262 testFIFO:
r0 = dm(SPIDMAC); // Read SPI DMA config. register
264 r0 = r0 and ri; // Extract FIFO status
if NE jump testFIFO;

266

notDMA:
268

// Wait for the TXS bit to be cleared
270 // => Transmit data buffer was emptied

testTXS:
272 ustatl = dm(SPISTAT);

bit tst ustatl TXS;

30 Institute of Broadband Communications

274

276

278

280

282

o

11

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

59

61

63

65

Bachelor Thesis

C SOURCE CODE

if TF jump testTXS;

// Wait for the SPIF bit to be set
// => Transmit shift register was emptied
testSPIF:
ustatl = dm(SPISTAT);
bit tst ustatl SPIF;
if not TF jump testSPIF;

rts;

C.3 Codec Configuration Representation and Modification

C.3.1 adl1835a.h

/**
* File: ad1835a.h

This file provides macros and constants for the configuration
of the AD1835A codec via the primary SPI port of the DSP.

Revisions:
2010-05-03, Matthias Hotz: Initial version
2010-06-01, Matthias Hotz: Added peak level register readout
2010-06-02, Matthias Hotz: Added level meter

%ok % % % % %k % %

B R R R R R R R R R R R R R)

#ifndef _AD1835A_H_
#define _AD1835A_H_

#include "spi.h"

.extern _adl1835a_config_buffer;
.extern _adl1835a_init;
.extern _adl1835a_update_level_meter;

Y R R R R R R R R T T T

* MACROS
R R R R R T

// Initialise the AD1835A: Set the SPI device-select signal and
// send the complete configuration
#define ad1835Initialize() \

call _ad1835a_init;

// Modify a setting in one of the control registers and transmit
// the changes to the AD1835A.

// Supported registers of the AD1835A:
// *) DAC control register 1 and 2
// *x) ADC control register 1, 2 and 3

/7

// Parameters:

// s_type Type of the setting. This is the second part of
// constants defined in the section "CONSTANTS".

// s_value ... Value of the setting. This is the third part of
// the constants defined in the section "CONSTANTS".
/7

// All constants for the control register settings conform to
// the following naming scheme:

//

// AD1835A_Type_ValuePt1_ValuePt2_..._ValuePtN
/7 Nl J \==f \meescccscscscscscscsescscsos /
// Prefix Type Value name

// name

/7

// Example:

// The right channel of DAC4 should be muted. The corresponding
// constant is AD1835A_DACOUT4R_MUTE, thus the type is DACOUT4R
// and the value is MUTE. The macro call to change this

// setting is:

//

// ad1835aModifySetting (DACOUT4R, MUTE);

//

#define ad1835aModifySetting(s_type, s_value) \

/* Read the corresponding register =/ \

Institute of Broadband Communications

31

67

69

71

73

87

89

91

93

97

99

101

103

109

111

113

115

117

125

127

129

131

137

139

141

143

145

SOURCE CODE

Bachelor Thesis

r0 = dm(AD1835A_##s_type## _REG); \
/* Get the mask for this setting =/ \
r1 = AD1835A_##s_type##_MASK; \
/* Clear the setting =/ \
r0 = r0 and ri; \
/* Get the new setting =x/ \
r1 = AD1835A_##s_type##_##s_value; \
/* Set the new setting =*/ \
r0 = r0 or ri; \
/* Write the modification to the buffer x/ \
dm(AD1835A_##s_type##_REG) = ro0; \
/* Send the data word to the AD1835A =x/ \
spiSendDataWordAndWait (ro0);
e e e e e e e e e e e e e b
// Set the volume level of an output
/7
// Parameters:
// dac_reg Name of the DAC volume register:
// DACVOL1L ... DAC 1 left
// DACVOL1R ... DAC 1 right
// DACVOL2L ... DAC 2 left
// DACVOL2R ... DAC 2 right
// DACVOL3L ... DAC 3 left
// DACVOL3R ... DAC 3 right
// DACVOL4L ... DAC 4 left
// DACVOL4R ... DAC 4 right
// vol_level ... Volume level in 1024 steps:
// Either one of the AD1835A_DACVOL_x constants
// or exlicit value (direct or register).
//
// Example:
// Set the volume of the right channel of DAC4 to low:
/7
// ad1835aSetVolume (DACVOL4R, AD1835A_DACVOL_LOW);
//
#define ad1835aSetVolume (dac_reg, vol_level) \
/* Read the corresponding register =/ \
r0 = dm(AD1835A_REG_##dac_reg); \
/* Create mask for volume setting =*/ \
r1 = ~AD1835A_DACVOL_MAX; \
/* Clear the volume setting =x/ \
r0 = r0 and ri; \
/* Get the new setting =x/ \
rl = vol_level; \
/* Set the new setting =*/ \
r0 = r0 or ri; \
/* Write the modification to the buffer x/ \
dm(AD1835A_REG_##dac_reg) = ro0; \
/* Send the data word to the AD1835A x/ \
spiSendDataWordAndWait (ro0);
VAt e e e e e e e e e e b Bl
// Read the content of a peak level register of the AD1835A.
// peak level register is reset after it was read.
//
// Parameters:
// peak_reg ... Name of the peak level register to read:
// 1L ... ADC left
// 1R ... ADC right
//
// Return Value:
// ro Received peak level (contained in bit 5 to 0)
/7
// Example:
// Read the peak level register of the left input channel:
/7
// adl1835aReadPeakRegister (1L);
/7

#define ad1835aReadPeakRegister (peak_reg)

/*
ro

spi
/*
ro
spi

/* Read the data word from the receive data buffer =x/

spi

/* Mask the peak level and shift it to bit 0 x/

ri

Generate read command data word =/

= AD1835A_REGADDR_ADCPEAK##peak_reg | AD1835A_READ;
/* Instruct AD1835A to send the peak register content =*/

SendDataWordAndWait (r0);

Send dummy word to read the result x/
= dm(AD1835A_REG_ADCCTRL3);
SendDataWordAndWait (r0);

ReadRecvDataBuffer();

= AD1835A_ADCPEAK_MASK;

The

PP A g g S P

32

Institute of Broadband Communications

163

165

167

169

171

177

179

181

183

185

191

193

195

197

199

205

207

209

211

213

221

223

225

227

229

Bachelor Thesis C SOURCE CODE

r0 = r0 and ri; \
ro = 1lshift r0 by AD1835A_ADCPEAK_SHIFT;

// Update the level meter for the AD1835A ADC inputs. This
// requires that the AD1835A is initialized, peak level readback
// is activated (ADC Control 3 register) and that the LEDs are
// routed and initialized.
#define adl835aUpdatelLevelMeter () \

call _adi1835a_update_level_meter;

R R R R R R R R R R R R R R R T T T 2
* CONSTANTS

**/
[/ =T m oo
// Aliases for the bits for better readability
#define AD1835A_ZERO (0x0000)

#define AD1835A_BITO (0x0001)
#define AD1835A_BIT1 (0x0002)
#define AD1835A_BIT2 (0x0004)
#define AD1835A_BIT3 (0x0008)
#define AD1835A_BIT4 (0x0010)
#define AD1835A_BIT5 (0x0020)
#define AD1835A_BIT6 (0x0040)
#define AD1835A_BIT7 (0x0080)
#define AD1835A_BIT8 (0x0100)
#define AD1835A_BIT9 (0x0200)
#define AD1835A_BIT10 (0x0400)
#define AD1835A_BIT11 (0x0800)
#define AD1835A_BIT12 (0x1000)
#define AD1835A_BIT13 (0x2000)
#define AD1835A_BIT14 (0x4000)
#define AD1835A_BIT15 (0x8000)
R e e e L LI L L L L L et
// DAC control 1 register settings

// De-emphasis filter:
// 1) none

// 2) at 44.1kHz

// 3) at 32.0kHz

// 4) at 48.0kHz

#define AD1835A_DEEMPH_NONE AD1835A_ZERO
#define AD1835A_DEEMPH_44_1 AD1835A_BIT8
#define AD1835A_DEEMPH_32 AD1835A_BIT9
#define AD1835A_DEEMPH_48 (AD1835A_BIT9 | AD1835A_BITS8)

// DAC data format:

// 1) Inter-IC Sound, I2S

// 2) Right-Justified, RJ

// 3) DSP Serial Port Mode, DSP
// 4) Left-Justified, LJ

// 5) Packed 256, P256

// 6) Packed 128, P128

#define AD1835A_DACFO_I2S AD1835A_ZERO

#define AD1835A_DACFO_RJ AD1835A_BITS5

#define AD1835A_DACFO_DSP AD1835A_BIT6

#define AD1835A_DACFO_LJ (AD1835A_BIT6 | AD1835A_BIT5)
#define AD1835A_DACFO_P256 AD1835A_BIT7

#define AD1835A_DACFO_P128 (AD1835A_BIT7 | AD1835A_BIT5)

// DAC data word width:
// 1) 24 bits

// 2) 20 bits

// 3) 16 bits

#define AD1835A_DACWORD_24BIT AD1835A_ZERO
#define AD1835A_DACWORD_20BIT AD1835A_BIT3
#define AD1835A_DACWORD_16BIT AD1835A_BIT4
// DAC power -down reset:

// 1) Normal operation

// 2) Power-down

#define AD1835A_DACPWR_NORM AD1835A_ZERO
#define AD1835A_DACPWR_DOWN AD1835A_BIT2

// DAC sample rate:

Institute of Broadband Communications 33

231

233

235

237

239

245

247

249

251

253

261

263

265

267

273

275

277

279

281

287

289

291

293

295

297

301

303

305

307

309

311

C SOURCE CODE

Bachelor Thesis

// 1) 48kHz
// 2) 96kHz

/7 3)

#define
#define
#define

192kHz (only 1/2)

AD1835A_DACRATE_48
AD1835A_DACRATE_96
AD1835A_DACRATE_192

// DAC control 2 register settings

// Stereo replicate:
// Data sent to 1/2 is also output

#define
#define

// Mute

AD1835A_DACREPLIC_OFF
AD1835A_DACREPLIC_ON

DAC output

// ON -> normal operation, mute ->

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

AD1835A_DACOUT1L_ON
AD1835A_DACOUT1L_MUTE
AD1835A_DACOUTTR_ON
AD1835A_DACOUTTR_MUTE
AD1835A_DACOUT2L_ON
AD1835A_DACOUT2L_MUTE
AD1835A_DACOUT2R_ON
AD1835A_DACOUT2R_MUTE
AD1835A_DACOUT3L_ON
AD1835A_DACOUT3L_MUTE
AD1835A_DACOUT3R_ON
AD1835A_DACOUT3R_MUTE
AD1835A_DACOUT4L_ON
AD1835A_DACOUT4L_MUTE
AD1835A_DACOUT4R_ON
AD1835A_DACOUT4R_MUTE

AD1835A_ZERO
AD1835A_BITO
AD1835A_BIT1

at 3/4, 5/6 and 7/8
AD1835A_ZERO
AD1835A_BIT8

mute input

AD1835A_ZERO
AD1835A_BITO
AD1835A_ZERO
AD1835A_BIT1
AD1835A_ZERO
AD1835A_BIT2
AD1835A_ZERO
AD1835A_BIT3
AD1835A_ZERO
AD1835A_BIT4
AD1835A_ZERO
AD1835A_BIT5
AD1835A_ZERO
AD1835A_BIT6
AD1835A_ZERO
AD1835A_BIT7

// DAC volume control register settings

// The lower 10 bits are used to set the volume level. The volume
// may be specified (linearly) from

// 3FF
// 3FE
// 002
// 001

#define
#define

#define
#define
#define

-> 1023/1023 -> 0.00 dBFS
-> 1022/1023 -> -0.01 dBFS

= 2/1023 -> -54.18 dBFS
= 1/1023 -> -60.20 dBFS

AD1835A_DACVOL_MIN
AD1835A_DACVOL_MAX

AD1835A_DACVOL_LOW
AD1835A_DACVOL_MED
AD1835A_DACVOL_HI

// ADC peak register settings

// Mask
#define

to extract the data bits
AD1835A_ADCPEAK_MASK

// Number of bits to shift the data

#define AD1835A_ADCPEAK_SHIFT
// ADC control 1 register settings
// Filter:

// 1) All pass
// 2) High pass

#define
#define

AD1835A_ADCFILT_ALLPASS
AD1835A_ADCFILT_HIGHPASS

// ADC power -down:
// 1) Normal operation
// 2) Power-down

#define
#define

AD1835A_ADCPWR_NORM
AD1835A_ADCPWR_DOWN

// ADC sample rate:

zero (0) to full scale (1023):

(0x0000)
(0x03FF)

(0x0100)

(0x0200)
(0x0300)

(0x03F0)

bits correctly

(-4

AD1835A_ZERO

AD1835A_BIT8

AD1835A_ZERO
AD1835A_BIT7

34

Institute

of Broadband Communications

313

315

317

319

321

325

327

329

331

333

335

341

343

345

347

349

359

361

363

369

371

373

375

377

379

383

385

387

389

391

393

Bachelor Thesis

C SOURCE CODE

// 1) 48kHz
// 2) 96kHz
#define AD1835A_ADCRATE_48

#define AD1835A_ADCRATE_96
Attt A tintnted
// ADC control 2 register settings

// Master/slave auxiliary mode
#define AD1835A_ADCAUXMD_SLAVE
#define AD1835A_ADCAUXMD_MASTER

data format:

Inter-IC Sound, I2S
Right-Justified, RJ
DSP Serial Port Mode,
Left-Justified, LJ
Packed 256, P256
Packed 128, P128
Auxiliary 256, AUX256
Auxiliary 512, AUX512
AD1835A_ADCFO_I2S
AD1835A_ADCFO_RJ
AD1835A_ADCFO_DSP
AD1835A_ADCFO_LJ
AD1835A_ADCFO_P256
AD1835A_ADCFO_P128
AD1835A_ADCFO_AUX256
AD1835A_ADCFO_AUX512

DSP

/7 8)

#define
#define
#define
#define
#define
#define
#define
#define

data word width:

24 bits

20 bits

16 bits

#define AD1835A_ADCWORD_24BIT
#define AD1835A_ADCWORD_20BIT
#define AD1835A_ADCWORD_16BIT

// Mute ADC:

// ON -> normal operation,
#define AD1835A_ADCINTL_ON
#define AD1835A_ADCINTL_MUTE
#define AD1835A_ADCINTR_ON
#define AD1835A_ADCINTR_MUTE

mute ->

/[s==—=cmosscococoooososossssssssoso
// ADC control 3 register settings
// Internal master clock:

// 1) IMCLK = MCLK = 2

// 2) IMCLK = MCLK * 1

// 3) IMCLK = MCLK * 2/3

#define AD1835A_ADCIMCLK_2MCLK
#define AD1835A_ADCIMCLK_TMCLK
#define AD1835A_ADCIMCLK_23MCLK

// ADC peak level readback
#define AD1835A_ADCPEAKRB_OFF
#define AD1835A_ADCPEAKRB_ON

AD1835A_ZERO
AD1835A_BIT6

AD1835A_ZERO
AD1835A_BIT9

AD1835A_ZERO
AD1835A_BIT6
AD1835A_BIT7
(AD1835A_BIT7 |
AD1835A_BIT8

(AD1835A_BIT8 |
(AD1835A_BIT8
(AD1835A_BIT8

AD1835A_BIT6)

AD1835A_BIT6)
AD1835A_BIT7)
| AD1835A_BIT7 |

AD1835A_BIT6)

AD1835A_ZERO
AD1835A_BIT4
AD1835A_BITS

mute input

AD1835A_ZERO
AD1835A_BITO
AD1835A_ZERO
AD1835A_BIT1

Scaling of input master clock MCLK

AD1835A_ZERO
AD1835A_BIT6
AD1835A_BIT7

AD1835A_ZERO
AD1835A_BIT5

// ADC input level meter threshold step

#define LEVEL_THRES_STEP

10

/*********‘k**********‘k***

* CONSTANTS (Required by the macros and

initial configuration)

B R R R R R R R R R R R R R)

// Register addresses inside the configuration buffer

#define
#define
#define
#define
#define
#define
#define

AD1835A_REG_DACCTRL1
AD1835A_REG_DACCTRL2
AD1835A_REG_DACVOL1L
AD1835A_REG_DACVOL1R
AD1835A_REG_DACVOL2L
AD1835A_REG_DACVOL2R
AD1835A_REG_DACVOL3L

(_ad1835a_config_buffer)

(_ad1835a_config_buffer + 1)
(_ad1835a_config_buffer + 2)
(_ad1835a_config_buffer + 3)
(_ad1835a_config_buffer + 4)
(_ad1835a_config_buffer + 5)
(_ad1835a_config_buffer + 6)

Institute of Broadband Communications

35

395

397

399

401

403

409

411

413

415

417

427

429

431

437

439

441

443

445

453

455

457

459

461

467

469

471

473

475

C SOURCE CODE

Bachelor Thesis

#define
#define
#define
#define
#define
#define

AD1835A_REG_DACVOL3R
AD1835A_REG_DACVOL4L
AD1835A_REG_DACVOL4R
AD1835A_REG_ADCCTRL1
AD1835A_REG_ADCCTRL2
AD1835A_REG_ADCCTRL3

(_ad1835a_config_buffer + 7)
(_ad1835a_config_buffer + 8)
(_ad1835a_config_buffer + 9)
(_ad1835a_config_buffer + 10)
(_ad1835a_config_buffer + 11)
(_ad1835a_config_buffer + 12)

// Register addresses inside the AD1835A

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

AD1835A_REGADDR_DACCTRL1
AD1835A_REGADDR_DACCTRL?2
AD1835A_REGADDR_DACVOL1
AD1835A_REGADDR_DACVOL?2
AD1835A_REGADDR_DACVOL3
AD1835A_REGADDR_DACVOL4
AD1835A_REGADDR_DACVOLS5
AD1835A_REGADDR_DACVOLG6
AD1835A_REGADDR_DACVOL7
AD1835A_REGADDR_DACVOLS8
AD1835A_REGADDR_ADCPEAKO
AD1835A_REGADDR_ADCPEAK1
AD1835A_REGADDR_ADCCTRL1
AD1835A_REGADDR_ADCCTRL2
AD1835A_REGADDR_ADCCTRL3

// Aliases

#define AD1835A_REGADDR_ADCPEAK1L
#define AD1835A_REGADDR_ADCPEAK1R

// R/~W bit

#define
#define

AD1835A_READ
AD1835A_WRITE

(0x0000)
(0x1000)
(0%2000)
(0x3000)
(0x4000)
(0x5000)
(0x6000)
(0x7000)
(0x8000)
(0x9000)
(0xA000)
(0xB000)
(0xC000)
(0xD000)
(0xE000)

AD1835A_REGADDR_ADCPEAKO
AD1835A_REGADDR_ADCPEAK1

AD1835A_BIT11
AD1835A_ZERO

// Bit masks to clear a setting in a control register

// DAC control 1

#define
#define
#define
#define
#define

register
AD1835A_DEEMPH_MASK
AD1835A_DACFO_MASK
AD1835A_DACWORD_MASK
AD1835A_DACPWR_MASK
AD1835A_DACRATE_MASK

// DAC control 2 register

#define
#define
#define
#define
#define
#define
#define
#define
#define

// ADC control 1

#define
#define
#define

AD1835A_DACREPLIC_MASK
AD1835A_DACOUT1L_MASK
AD1835A_DACOUT1R_MASK
AD1835A_DACOUT2L _MASK
AD1835A_DACOUT2R_MASK
AD1835A_DACOUT3L_MASK
AD1835A_DACOUT3R_MASK
AD1835A_DACOUT4L _MASK
AD1835A_DACOUT4R_MASK

register
AD1835A_ADCFILT_MASK
AD1835A_ADCPWR_MASK
AD1835A_ADCRATE_MASK

// ADC control 2 register

#define
#define
#define
#define
#define

AD1835A_ADCAUXMD_MASK
AD1835A_ADCFO_MASK
AD1835A_ADCWORD_MASK
AD1835A_ADCINTR_MASK
AD1835A_ADCINTL_MASK

// ADC control 3 register

#define
#define

AD1835A_ADCIMCLK_MASK
AD1835A_ADCPEAKRB_MASK

(~(AD1835A_BIT9
(~(AD1835A_BIT7
(~(AD1835A_BIT4
(~AD1835A_BIT2)
(~(AD1835A_BIT1

(~AD1835A_BIT8)
(~AD1835A_BITO)
(~AD1835A_BIT1)
(~AD1835A_BIT2)
(~AD1835A_BIT3)
(~AD1835A_BIT4)
(~AD1835A_BIT5)
(~AD1835A_BIT6)
(~AD1835A_BIT7)

(~AD1835A_BIT8)
(~AD1835A_BIT7)
(~AD1835A_BIT6)

(~AD1835A_BIT9)
(~(AD1835A_BITS
(~(AD1835A_BIT5
(~AD1835A_BIT1)
(~AD1835A_BITO)

(~(AD1835A_BIT7
(~AD1835A_BIT5)

// Map a setting to its control register

// DAC control 1

#define

register
AD1835A_DEEMPH_REG

| AD1835A_BIT8))
| AD1835A_BIT6 |
| AD1835A_BIT3))

| AD1835A_BITO0))

| AD1835A_BIT7 |
| AD1835A_BIT4))

| AD1835A_BIT6))

AD1835A_REG_DACCTRL1

AD1835A_BIT5))

AD1835A_BIT6))

36

Institute of Broadband Communications

477

479

481

483

489

491

493

497

10

12

14

16

18

20

22

24

26

28

30

32

36

38

40

42

44

Bachelor Thesis

C SOURCE CODE

#define AD1835A_DACFO_REG
#define AD1835A_DACWORD_REG
#define AD1835A_DACPWR_REG
#define AD1835A_DACRATE_REG

// DAC control 2 register
#define AD1835A_DACREPLIC_REG
#define AD1835A_DACOUTTL_REG
#define AD1835A_DACOUT1R_REG
#define AD1835A_DACOUT2L_REG
#define AD1835A_DACOUT2R_REG
#define AD1835A_DACOUT3L_REG
#define AD1835A_DACOUT3R_REG
#define AD1835A_DACOUT4L_REG
#define AD1835A_DACOUT4R_REG

// ADC control 1 register
#define AD1835A_ADCFILT_REG
#define AD1835A_ADCPWR_REG
#define AD1835A_ADCRATE_REG

// ADC control 2 register
#define AD1835A_ADCAUXMD_REG
#define AD1835A_ADCFO_REG
#define AD1835A_ADCWORD_REG
#define AD1835A_ADCINTR_REG
#define AD1835A_ADCIN1L_REG

// ADC control 3 register
#define AD1835A_ADCIMCLK_REG
#define AD1835A_ADCPEAKRB_REG

#endif

C.3.2 adl1835a.asm

R R R R R R R R R R R R R R R T 2

* File: ad1835a.asm

Revisions:
2010-05-03, Matthias Hotz:
2010-06-02, Matthias Hotz:

EE U N

AD1835A_REG_DACCTRL1
AD1835A_REG_DACCTRL1
AD1835A_REG_DACCTRL1
AD1835A_REG_DACCTRL1

AD1835A_REG_DACCTRL2
AD1835A_REG_DACCTRL2
AD1835A_REG_DACCTRL2
AD1835A_REG_DACCTRL2
AD1835A_REG_DACCTRL2
AD1835A_REG_DACCTRL2
AD1835A_REG_DACCTRL2
AD1835A_REG_DACCTRL2
AD1835A_REG_DACCTRL2

AD1835A_REG_ADCCTRL1
AD1835A_REG_ADCCTRL1
AD1835A_REG_ADCCTRL1

AD1835A_REG_ADCCTRL2
AD1835A_REG_ADCCTRL2
AD1835A_REG_ADCCTRL2
AD1835A_REG_ADCCTRL2
AD1835A_REG_ADCCTRL2

AD1835A_REG_ADCCTRL3
AD1835A_REG_ADCCTRL3

This file provides subroutines for the configuration of the
AD1835A codec via the primary SPI port of the DSP.

Initial version
Added level meter

B R R R R R R R R R R R R R R R L)

#include <def21369.h>
#include "ad1835a.h”
#include "spi.h"
#include "led.h”

// Reset value of the SPI port flag register

#define SPIFLG_RSTVAL 0x0F80

.global _adl1835a_config_buffer;
.global _ad1835a_init;

.global _ad1835a_update_level_meter;

R R R R R R R R R R R R R R T T 2

* INTERNAL MACROS

R R R R L)

// Converts the peak level stored in r0 to a bit mask for the
// LEDs stored in r2. The threshold

// ri.

#define levelToFlags(chname, lev_lo,

ro = r0 - ri1;

if GT jump chname##_level2;
r2 = lev_hi | lev_med2
jump chname##_end;

chname##_level2:

ro = r0 - ri1;

if GT jump chname##_level3;

r2 = lev_med2 | lev_medil

jump chname##_end;
chname##_level3:
r0O = r0 - ri;
if GT jump chname##_level4;

is assumed to be stored in

lev_med1, lev_med2,

lev_medl | lev_lo;

lev_lo;

Institute of Broadband Communications

37

46

48

50

52

54

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

104

106

108

110

112

120

122

124

126

C SOURCE CODE

Bachelor Thesis

r2 = lev_medl | lev_lo;

jump chname##_end;
chname## _level4:
ro = r0 - ri;
if GT jump chname##_end;
r2 = lev_lo;
chname##_end:

P

R R R R R R R R R R R R T

* CONFIGURATION DATA

R R R R R R R R T

.section/dm seg_dmda;

// Buffer for the configuration of

// default configuration

the AD1835A initialized with

.var _adl1835a_config_buffer[]

// DAC control 1 register

AD1835A_REGADDR_DACCTRL1 | // Register address
AD1835A_WRITE | // Write to register
AD1835A_DEEMPH_NONE | // No de-emphasis filter
AD1835A_DACFO_I2S | // Inter-IC sound data format
AD1835A_DACWORD_24BIT | // 24 bit DAC word width
AD1835A_DACPWR_NORM | // Normal operation (not power-down)
AD1835A_DACRATE_48, // 48kHz sample rate

// DAC control 2 register

AD1835A_REGADDR_DACCTRL2 | // Register address
AD1835A_WRITE | // Write to register
AD1835A_DACREPLIC_OFF | // No stereo replication
AD1835A_DACOUT1L_ON | // DAC 1 left not muted
AD1835A_DACOUT1R_ON | // DAC 1 right not muted
AD1835A_DACOUT2L_ON | // DAC 2 left not muted
AD1835A_DACOUT2R_ON | // DAC 2 right not muted
AD1835A_DACOUT3L_ON | // DAC 3 left not muted
AD1835A_DACOUT3R_ON | // DAC 3 right not muted
AD1835A_DACOUT4L_ON | // DAC 4 left not muted
AD1835A_DACOUT4R_ON , // DAC 4 right not muted

// DAC 1 left volume control register

AD1835A_REGADDR_DACVOL1 | // Register address
AD1835A_WRITE | // Write to register
AD1835A_DACVOL_MAX, // Maximum volume

// DAC 1 right volume control register

AD1835A_REGADDR_DACVOL2 | // Register address
AD1835A_WRITE | // Write to register
AD1835A_DACVOL_MAX, // Maximum volume

// DAC 2 left volume control register

AD1835A_REGADDR_DACVOL3 | // Register address
AD1835A_WRITE | // Write to register
AD1835A_DACVOL_MAX, // Maximum volume

// DAC 2 right volume control register

AD1835A_REGADDR_DACVOL4 | // Register address
AD1835A_WRITE | // Write to register
AD1835A_DACVOL_MAX, // Maximum volume

// DAC 3 left volume control register

AD1835A_REGADDR_DACVOL5 | // Register address
AD1835A_WRITE | // Write to register
AD1835A_DACVOL_MAX, // Maximum volume

// DAC 3 right volume control register

AD1835A_REGADDR_DACVOLG6 | // Register address
AD1835A_WRITE | // Write to register
AD1835A_DACVOL_MAX, // Maximum volume

// DAC 4 left volume control register

AD1835A_REGADDR_DACVOL7 | // Register address
AD1835A_WRITE | // Write to register
AD1835A_DACVOL_MAX, // Maximum volume

// DAC 4 right volume control register

AD1835A_REGADDR_DACVOLS8 | // Register address
AD1835A_WRITE | // Write to register
AD1835A_DACVOL_MAX, // Maximum volume

// ADC control 1 register

AD1835A_REGADDR_ADCCTRL1 | // Register address

38 Institute of Broadband Communications

130

132

134

136

144

146

148

156

158

160

162

164

166

168

170

172

174

176

178

180

186

188

190

192

194

Bachelor Thesis

C SOURCE CODE

/*

*

AD1835A_WRITE | // Write to register
AD1835A_ADCFILT_ALLPASS | // No high pass filter
AD1835A_ADCPWR_NORM | // Normal operation (not power-down)
AD1835A_ADCRATE_48 , // 48kHz sample rate

// ADC control 2 register

AD1835A_REGADDR_ADCCTRL?2
AD1835A_WRITE
AD1835A_ADCAUXMD_SLAVE
AD1835A_ADCFO_I2S

// Register address

// Write to register

// Slave in auxiliary mode
Inter-IC sound data format
AD1835A_ADCWORD_24BIT // 24 bit ADC word width
AD1835A_ADCINTL_ON // ADC left active (not muted)
AD1835A_ADCINTR_ON, // ADC right active (not muted)

~
~

// ADC control 3 register

AD1835A_REGADDR_ADCCTRL3 | // Register address
AD1835A_WRITE | // Write to register
AD1835A_ADCIMCLK_2MCLK | // Internal master clock = 2 * MCLK
AD1835A_ADCPEAKRB_OFF ; // Peak level readback deactivated

R R R R R R R R R R R R R R R R R R L e

GLOBAL SUBROUTINES

B R R R R R R R R R R R)

.S

//
_a

_a

_a

_a

ection/pm seg_pmco;

Initialize the AD1835A CODEC
d1835a_init:

// Enable the device select signal for the AD1835A
r0 = SPIFLG_RSTVAL | DS3EN;
dm(SPIFLG) = rO0;

// Send the complete configuration to the AD1835A
spiSendDataBuffer (_ad1835a_config_buffer,
length(_ad1835a_config_buffer));

d1835a_init.end:
rts;

Update the level meter for the AD1835A ADC channels. This
requires that the AD1835A is initialized, peak level readback
is activated (ADC Control 3 register) and that the LEDs are
routed and initialized.

d1835a_update_level_meter:

// Read the left peak level register and generate its LED mask
ad1835aReadPeakRegister (1L);

r1 = LEVEL_THRES_STEP;

r2 = 0;

levelToFlags(left, LED5_ON, LED6_ON, LED7_ON, LED8_ON);

r7 = r2;

// Read the right peak level register and generate its LED mask
ad1835aReadPeakRegister (1R);

r1 = LEVEL_THRES_STEP;

r2 = 0;

levelToFlags(right, LED4_ON, LED3_ON, LED2_ON, LED1_ON);

// Combine the LED masks and set the LEDs
r0 = r2 or r7;
ledSet(ro0);

d1835a_update_level_meter.end:
rts;

C.4 LED Routing and Control

C

/*

*

*
*
*
*
*
*

4.1 led.h

KKK A KRR R R AR R A AR A AR A AR A AR A AR KA KR KA A KR KA A KRR AA KR AA KR KA KRR AA R AR KRR AR Rk, %

File: led.h

This file provides macros to route and control the general-
purpose LEDs of the ADSP-21369 EZ-KIT Lite board.

Revisions:
2010-06-02, Matthias Hotz: Initial version

Institute of Broadband Communications

39

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

54

56

58

60

62

64

11

13

15

17

19

2

=

C SOURCE CODE

Bachelor Thesis

*

KKK KA KRR R R A AR A AR A AR A AR A A KR KA A KRR A KR A AR KR AA KR AAKR A AR A AR AR A AR A AR AR Ak kA k k% */
#ifndef _LED_H_
#define _LED_H_

.extern _led_init;
.extern _led_set;

R R R R R R R R R R R R R R R R R R R T T T

* MACROS
R R R R L

// Macro to initialize and route the LEDs
#define ledInitialize() \
call _led_init;

/) mm oo oo
// Macro set the LED status

//

// Parameters:

// led_stat ... Status of the LEDs: Use the LEDx_x constants
// and link them using a logical or operation.
/7

// Example:

// ledSet (LED1_ON | LED2_OFF | LED3_ON | LED4_OFF |

// LED5_ON | LED6_OFF | LED7_ON | LED8_OFF);

/7

#define ledSet(led_stat) \

r5 = led_stat; \
call _led_set;

K hkkkkkkhkkkhkkkhhkkhhkkhhkkkkkkkkkkkkhkkkkkkkkkkkkkkkokkkokkkokkkokk %k k%
* CONSTANTS

B R R R R R R R R R R R R R R R R)

#define LED1_ON 0x01
#define LED2_ON 0x02
#define LED3_ON 0x04
#define LED4_ON 0x08
#define LED5_ON 0x10
#define LED6_ON 0x20
#define LED7_ON 0x40
#define LED8_ON 0x80
#define LED1_OFF 0x00
#define LED2_OFF 0x00
#define LED3_OFF 0x00
#define LED4_OFF 0x00
#define LED5_OFF 0x00
#define LED6_OFF 0x00
#define LED7_OFF 0x00
#define LED8_OFF 0x00
#endif

C.4.2 led.asm

/*********k*********************k*************************k******
* File: led.asm

This file provides subroutines to route and control the
general -purpose LEDs of the ADSP-21369 EZ-KIT Lite board.

* % %k %

* Revisions:

* 2010-06-02, Matthias Hotz: Initial version

*

KA AR A AR AR A A AR AR AR A A A AR AR AR AR AR AR AR AR A AR AR A A Ak Ak Ak hkkhkkhkkhkhkkhkkhkkx */

#include <def21369.h>
#include <sru.h>
#include "led.h”

.global _led_init;
.global _led_set;

R R R R R R R R
* INTERNAL MACROS

40 Institute of Broadband Communications

23

Bachelor Thesis

C SOURCE CODE

R R R R L)

// Macro to test the bit

"led"” in the USTAT1-register and set the

25 // bit "flgbit"” in the FLAGS-register accordingly.
#define ledSetFlag(led, flgbit) \
27 bit tst ustatl led##_ON; \
if not TF jump led##0ff; \
29 bit set flags flgbit; \
jump led##End; \
31 led##0ff: \
bit clr flags flgbit; \
33 led##End:
35 // Macro to test the bit "led” in the USTAT1-register and set the
// pin buffer output "srupb” accordingly.
37 #define ledSetPinBufOut(led, srupb) \
bit tst ustatl led##_ON; \
39 if not TF jump led##0ff; \
SRU(HIGH, srupb); \
41 jump led##End; \
led##0ff: \
43 SRU(LOW, srupb); \
led##End:
45
47 /**
* GLOBAL SUBROUTINES
49 **/
.section/pm seg_pmco;
51
(] >=mmmmscocosooooooooonono00o0000soo0000Coo00CooS000000000000000
53 // Subroutine to initialize and route the LEDs
_led_init:
55
// Route LEDs. Notes:
57 // * LED6 and LED7 are connected to DAI pins. The SRU1 of
// the DAI pins does not provide a connection to a general
59 // purpose (flag) register, for this reason the output is
// controlled by routing the pin buffer inputs to fixed
61 // logical levels.
// * LED8 is connected to the FLAG3 pin of the DSP.
63
// LED1: Route to FLAG4 to the pin as output
65 SRU(FLAG4_0, DPI_PB06_I);
SRU(HIGH, DPI_PBENO06_I);
67
// LED2: Route to FLAG5 to the pin as output
69 SRU(FLAG5_0, DPI_PBO07_I);
SRU(HIGH, DPI_PBENO07_I);
71
// LED3: Route to FLAG6 to the pin as output
73 SRU(FLAG6_0, DPI_PB08_I);
SRU(HIGH, DPI_PBEN08_I);
75
// LED4: Route to FLAG7 to the pin as output
g SRU(FLAG7_0, DPI_PB13_I);
SRU(HIGH, DPI_PBEN13_I);
79
// LED5: Route to FLAG8 to the pin as output
81 SRU(FLAG8_0, DPI_PB14_I);
SRU(HIGH, DPI_PBEN14_1I);
83
// LED6: Configure as output and output logical low
85 SRU(LOW, DAI_PB15_I);
SRU(CHIGH, PBEN15_I);
87
// LED7: Configure as output and output logical low
89 SRU(LOW, DAI_PB16_I);
SRU(HIGH, PBEN16_I);
91
// LED8: Set FLAG3-pin to "flag-mode”
93 ustatl = dm(SYSCTL);
bit clr ustatl TMREXPEN | MSEN;
95 dm(SYSCTL) = ustatl;
97 // Configure the FLAG-pins as output
bit set flags FLG30 | FLG40 | FLG50 | FLG60 | FLG70 | FLG8O;
99
// Initialize all LED outputs to logical low
101 bit clr flags FLG3 | FLG4 | FLG5 | FLG6 | FLG7 | FLGS8;
103 _led_init.end:

Institute of Broadband Communications

41

105

107

109

111

113

121

123

125

127

SOURCE CODE

Bachelor Thesis

rts;
A e iatadadn et L
// Subroutine to set the LED status
//
// Parameters:
// r5 ... Bit mask for the status of the LEDs
//
_led_set:
// Use a universal status register for the bit tests
ustatl = rb5;
ledSetFlag (LED1, FLG4);
ledSetFlag (LED2, FLG5);
ledSetFlag (LED3, FLG6);
ledSetFlag (LED4, FLG7);
ledSetFlag (LED5, FLG8);
ledSetPinBufOut (LED6, DAI_PB15_I);
ledSetPinBufOut (LED7, DAI_PB16_I);
ledSetFlag (LED8, FLG3);
_led_set.end:
rts;
42 Institute of Broadband Communications

