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Abstract

Sum-Product Networks (SPNs) are a highly efficient type of a deep probabilistic
model that allows exact inference in time linear in the size of the network. In
previous work, several heuristic structure learning approaches for SPNs have been
developed, which are prone to overfitting compared to a purely Bayesian model.
In this work, we propose a principled approach to structure learning in SPNs by
introducing infinite Sum-Product Trees (SPTs). Our approach is the first correct and
successful extension of SPNs to a Bayesian nonparametric model. We show that
infinite SPTs can be used successfully to discover SPN structures and outperform
infinite Gaussian mixture models in the task of density estimation.

1 Introduction

Sum-Product Networks (SPNs) [6, 21] are a highly efficient type of deep probabilistic models and
have been successfully applied to various generative and discriminative tasks, e.g. [21, 12, 5, 18, 2].
In recent years, several approaches to structure and parameter learning of SPNs have been proposed,
e.g. [8, 13, 18, 20, 24, 1, 9, 28, 29]. SPNs can be defined recursively, as weighted sums and products
of smaller SPNs, with univariate or multivariate probability distributions as leaf nodes. In a complete
and decomposable SPN [21, 17], all children of a sum node have the same variable scope as the sum,
whereas the children of each product partition the product’s scope into non-empty disjoint sub-scopes.
Complete and decomposable SPNs can be represented as a sum of induced trees ([28, 29]). The
generative process of normalized SPNs can be described informally by: (1) selecting an induced tree
T with probability proportional to its weights: P (T ) ∝

∏
w∈T w and (2) sampling the observation

from the leaf node distributions of the induced tree. Therefore, the posterior distribution of any
Bayesian nonparametric extension of SPNs depends on the notion of induced trees. We introduce
infinite Sum-Product Trees (SPTs), the first Bayesian nonparametric extension of SPNs with a
posterior distribution based on induced trees. Previous work ([15]) neglected induced trees in their
posterior construction and did not report quantitative results and comparisons to existing approaches.
We show that our infinite SPTs allow to discover SPN structures with high modelling performance
while maintaining a good generalisation behavior.

2 Model

In order to define our generative process for infinite SPTs, the following simplifying but not very
restrictive assumptions are made: (1) All leaf distributions are univariate; (2) all product nodes have
two children; (3) sums and products occur in an alternating fashion and (4) the root node is a sum.
Additional to those assumptions, we augment an SPN structure with so-called group nodes. Each
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(a) Building block of infinite SPTs. (b) Example of an induced tree in infinite SPTs.

Figure 1: In infinite SPTs, sums of a SPN are augmented by additional sums (group nodes) one level
below them, which allow product nodes that apply the same partition of their scope to be grouped
together. Note that Vi 6= Vj ∀(i, j) ∈ {a, b, c, d} and all Vi with i ∈ {a, b, c, d} are non-empty
sub-scopes of V . Moreover, Va ∪ Vb = V , Va ∩ Vb = ∅ and Vc ∪ Vd = V , Vc ∩ Vd = ∅.

group node, which is essentially an additional sum, groups together products which share the same
partition of their scope. Figure 1 illustrates the basic structure of infinite SPTs with additional group
nodes and induced trees in the model construction. Note that the number of group nodes, children of
sum S with variable scope V , is equal to

{|V |
2

}
, where

{}
is the Stirling number of the second kind

and |V | is the cardinality of the scope. In order to enumerate each partition of scope V = {1, . . . , D},
we index every possible partition of scope into two non-empty disjoint sub-scopes resulting in the
index set U = {1, . . . ,

{|V |
2

}
}. Similar to the definition of SPNs, the generative process of infinite

SPTs is defined recursively. Consider N observations with dimensionality D, where we denote xdn to
be the value of the dth variable of observation n ≤ N . The generative process of infinite SPTs can be
described as follows:

Starting at the root node:

1. If the scope VS ⊆ V for the current node S is multivariate:

• Draw weights wS to the
{|VS |

2

}
group nodes from a Dirichlet distribution with hyper-

parameter αS .
• According to wS draw the latent assignments cS,n to the group nodes and draw the

partition assignment of each group node ucS,n
∈ U uniformly without replacement.

• For each selected group node, draw latent assignments zcS,n
for the observations at the

group node from a Chinese restaurant process with hyper-parameter βcS,n
to product

nodes.
• For each selected product, partition the scope into non-empty disjoint sub-scopes

according to ucS,n
and for each child of the product, apply the infinite SPN process for

the observations at the child recursively.

2. Else for node S with univariate scope d ∈ V :

• Draw latent leaf assignments cS,n from a Chinese restaurant process with hyper-
parameter γS and draw distribution parameters θcS,n

from an appropriate prior.

• Generate the value of the dth dimension for the nth observation from an appropriate
leaf node distribution parametrized with θcS,n

.

Our MCMC inference algorithm uses Gibbs sampling and is based on the work by [16]. The algorithm
scales linearly in the number of observations and active sums in the network and includes inference
over the hyper-parameters. Detailed descriptions of the MCMC inference algorithm are omitted due
to space constraints. With increasing dimensionality of the data, the infinite SPT learns increasingly
complex and deep hierarchical representations of the data. Similar to the crosscat model [26] the
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(a) Log density of an infinite SPT.

Previous Duration
-2 0 2

-2

0

2

C
u
rr

e
n
t 

D
u
ra

ti
o
n

(b) Log density of an infinite GMM.

Figure 2: Visualisation of Old Faithful geyser with the corresponding log density modelled by an
infinite SPT and an infininte GMM at iteration 103. To allow for better comparability, both models
are learned using the same hyperparameter settings and base distributions.

Table 1: Average 10-fold cross-validation log predictive densities and Mann-Whitney U p-values.
The infinite GMM and the infinite SPT are trained over 1000 iterations with Gibbs sampling.

Dataset infininte GMM infinite SPT infinite GMM / infinite SPT

Old Faithful −1.737 −1.700 < 0.01
Chemical Diabetes −3.022 −2.879 < 0.01
Iris −3.943 −3.744 < 0.01

infinite SPT has asymptotic capacity in terms of the number of observations and the dimensionality
of the data. Moreover, the infinite SPT can be used to analyse heterogeneous data. In contrast to
previous work in the field, e.g. [3, 14, 26], observations are generated from induced trees, which are
selective SPNs ([19]) inside the infinite SPT.

3 Experiments and Future Work

We present results on artificial and real-world datasets with different dimensions and complexity. To
assess the performance of our approach we measure the density estimation performance of the infinite
SPT on the Old Faithful geyser dataset (processed as described by [25]), the Chemical Diabetes
dataset [23], (using the dimensions: glucose area, insulin area and insulin resistance) and the Iris
dataset [11]. In addition, we demonstrate latent variable discovery capacities of infinite SPTs on the
Chemical Diabetes and a movie script dialogs dataset. In all experiments, we initialize our infinite
SPT using a sequential construction of the structure. We used conjugate priors and sampled the
hyper-parameters for the Chinese restaurant processes from independent Gamma priors [10].

Density Estimation Figure 2 illustrates that infinite SPTs are better able to explain the data
compared to infinite Gaussian mixture models (GMM) [22]. Infinite SPT favor deep structures, due
to the construction of the prior on induced trees, allowing the model to fit complex distribution more
easily than a shallow model ([7]), e.g. infinite GMMs. With growing dimensionality, the distribution
modelled by an infinite SPT will differ from those modelled by an infinite GMM with increasing
probability. In our experiments we used a univariate Normal-Normal distribution as base distribution
for all methods. Table 1 shows the average 10-fold cross-validation log predictive densities computed
as in [27] for (1) infinite GMMs and (2) infinite SPTs. On all datasets, the infinite SPT obtains
significantly better average 10-fold cross-validation log predictive densities than infinite GMMs.
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(a) True group assignments.
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(b) Projected group assignments.

Figure 3: Comparison of true group assignments and group assignments estimated by an infinite SPT
on the Chemical Diabetes dataset. The coloring of the projected assignments encodes the position of
their induced trees on a one dimensional embedding of the differences between assignment vectors,
e.g. dark blue dots are more similar to light blue dots then to red dots. The enlarged section illustrates
the induced trees of two observations from the dataset.

Figure 4: Preliminary results on the movie script dialog dataset. The infinite SPT finds groupings
of the utterances based on their one-hot coding related to similar movie source, similar latent
characteristic and similar dialog act, from left to right.

Latent Variable Discovery In addition, we analysed the clustering capacities qualitatively on the
Chemical Diabetes dataset and show preliminary results on a complex real-world dataset of movie
script dialogs. The resulting grouping on the Chemical Diabetes dataset is illustrated in Figure 3 with
positions obtained from a linear discriminant analysis. In order to visualize the group assignments,
we used multidimensional scaling [4] to transform the binary assignment vectors (each representing
an induced tree inside the infinite SPT) into an one dimensional space. Alternatively, the binary
assignment vectors could be clustered using a hierarchical clustering, allowing for inspection of the
hierarchy learned by the infinite SPT. The real-world dataset of movie script dialogs is based on
utterances of four different mentor characters: Yoda and Obi-Wan Kenobi from Star Wars, Morpheus
from The Matrix and Juan Sánchez Ramírez from Highlander. We extracted 62 utterances and used a
one-hot coding based on the 25 most frequent words (excluding stop words) to encode each utterance.
Moreover, each utterance was manually annotated by a human expert in terms of a latent characteristic,
e.g. weakness revealing utterance. We use an infinite SPT model with Beta-Bernoulli distributions to
identify latent groupings of those utterances. Preliminary results are shown in Figure 4.

Future Work In future work we will explore: (1) implementation of infinite SPT exploiting
parallel computations; (2) hierarchical priors for leaf node parameters and (3) explore alternative
representations that allow for more flexible and complex network structures than the infinite SPT, e.g.
node sharing. As the current experiments show promising results, we will conduct a wider variety of
experiments to investigate the capabilities of our approach in more detail.
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