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Abstract—The indirect learning architecture is one of the most
common setups for the identification of digital predistorters
which are used to linearize radio frequency power amplifiers.
To apply the indirect learning architecture in a real transmitter,
the unknown delay and gain between the transmitted and the
received signal must be corrected. In the present paper we
present a survey of delay and gain correction methods and
discuss basic objectives for selecting the delay and gain of
the linearized system. We demonstrate the equivalence of gain
correction before and after identification and conclude with a
method for performance comparison at constant output power.

I. INTRODUCTION

The digital enhancement of analog, mixed-signal and radio
frequency circuits is a highly active field of research, which
is motivated by the good scaling properties of digital circuits,
the increased flexibility and the potential for improved power
efficiency [1]. Especially for wireless transmitters, the power
efficiency is an important design objective, since it directly
affects the operation time of battery powered mobile devices,
and it is a main factor for the operational costs and the
environmental impact of cellular base-stations. Within wireless
transmitters, the power amplifier is one of the most critical
parts, limiting both the linearity and the efficiency. Since for
power amplifiers, there is a trade-off between linearity and
efficiency [2], nonlinear transmitter architectures [3]–[5] and
the linearization by digital predistortion [6]–[8] have become
key technologies for power efficient wireless transmitters.

In digital predistortion, the distortion produced by the power
amplifier is pre-compensated in the digital baseband process-
ing of the transmitter. In contrast to post-compensation in a
receiver, the desired compensator output signal is not known
in the case of a predistorter. Therefore, specific identification
architectures are necessary which can be categorized as:

(A1) System identification and inversion. [9]
(A2) Direct learning by an adaptive nonlinear filtered-x

algorithm [10] or by stochastic otimization [6].
(A3) Indirect learning by identifying a postdistorter that is

used in front of the system as a predistorter. [11]
Allthough the architectures (A1) and (A2) have the potential for
improved identification performance [12], the indirect learning
architecture is the most popular one because of its simplicity.
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Fig. 1. Digital predistortion using the indirect learning architecture.

A block diagram of digital predistortion using indirect
learning is shown in Fig. 1, where single arrows indicate real
signals and double arrows indicate complex signals. The top
part shows the radio frequency (RF) loop consisting of the
transmitter (DAC, up-mixer, power amplifier) followed by the
feedback receiver (attenuator, down-mixer, ADC). The bottom
part shows the indirect learning architecture, consisting of
the RF loop and digital nonlinear baseband systems used as
pre- and postdistorters. The aim of digital predistortion is to
linearize the path from the source signal u[n] to the output
signal y[n], such that the cascade of the predistorter and the
RF loop reduces to a desired complex gain G and a delay
z−D, minimizing the predistortion error signal epre[n]. To
identify such a predistorter, the indirect learning architecture
first identifies a postdistorter using a delayed version of the
input signal x[n] and a normalized version of the output signal
y[n], which minimizes the postdistortion error signal epost[n].
After identifying the postdistorter, it is used as a predistorter
with the expected result that this predistorter also minimizes
the predistortion error signal epre[n]. In practice, the expected
result can be achieved if two requirements are fulfilled:

(R1) The postdistorter is able to sufficiently minimize its
error signal, so that it is close to a true inverse which
is, by definition, both a pre- and a post-inverse.

(R2) The predistorter is operated in a region so that the
predistorted signal x[n] does not exceed the magnitude
range it had during postdistorter identification.



Since the requirements (R1) and (R2) are crucial for the
success of indirect learning and their fulfillment strongly
relies on the choice of the input signal delay z−D and the
normalization gain 1/G during postdistorter identification,
there are many papers on methods for delay correction [13]–
[18] and gain correction [19]–[23] in the digital predistortion
literature. To our best knowledge, however, there is no survey
which presents a concise overview of this important topic.

In the present paper we present such a survey, where
we review methods for delay correction, combined with an
overview on gain correction. We discuss practical aspects for
lab-based measurements and on-chip applications and present
methods for delay and gain correction which ensure that the
requirements (R1) and (R2) can be fulfilled.

II. DELAY CORRECTION

The fulfillment of requirement (R1) depends on the post-
distorter model and the input signal delay. The postdistorter
model must be able to sufficiently minimize the postdistortion
error and the input signal delay must be chosen such that the
modeling capabilities of the postdistorter can be exploited.

In the case of narrowband signals, it is typically sufficient
to use a quasi-memoryless model which can be implemented
by a complex baseband polynomial [7] or a lookup table [14].
Since a quasi-memoryless model is not able to compensate
residual loop delay error, accurate alignment of the transmitted
and the received signal is very important, requiring either high
oversampling ratio or fractional delay correction [16].

With wideband signals, frequency dependent effects arise
which cannot be represented by a quasi-memoryless model.
In this case, nonlinear models with memory are required such
as the memory polynomial [9], the generalized memory poly-
nomial [24] or the baseband Volterra series [25]. Depending
on their memory depth, these models are able to compensate a
certain amount of loop delay error such that the requirements
on the delay correction can be relaxed to integer resolution. An
important constraint, however, is that the postdistorter is not
able to compensate non-causal misalignment of the training
signals or causal misalignment beyond its memory depth [17].
For the indirect learning architecture in Fig. 1 this means that
overestimation of the input signal delay up to one sample can
be tolerated, but underestimation must be avoided.

Robust delay correction requires an objective function that
is insensitive to noise, distortion and complex scaling. In the
literature many different objective functions are used like the
cross-covariance of magnitudes [16], the cross-correlation of
differential magnitudes [13], and the distance between local
extrema of the phase characteristic [18]. Although the use of
real quantities like magnitude and phase lowers the imple-
mentation complexity, the complex cross-correlation [15] may
be considered the most general objective function, since it in-
cludes both magnitude and phase. In the remaining part of this
section, we therefore review the complex cross-correlation, a
method for its efficient computation and techniques for integer
and fractional delay estimation and correction.

A. Definition of the Complex Cross-Correlation

The complex cross-correlation of two finite-length, discrete-
time signals x[n] and y[n], with 0 ≤ n ≤ N − 1, is given by

rxy[m] =

N−1∑
n=0

x∗[n−m]y[n] (1)

where we can set x[n] and y[n] to zero outside their definition
range resulting in the linear cross-correlation, or periodically
extend them to get the circular cross-correlation. The linear
cross-correlation has a support of −(N−1) ≤ m ≤ +(N−1).
The circular cross-correlation is periodic in m and uniquely
defined by the N samples within 0 ≤ m ≤ +(N − 1). The
choice whether to use the linear or the circular definition
depends on the application. At lab-based measurements, a
periodic input signal can be used, which allows the acquisition
of the output signal at an arbitrary point in time. In this case,
the circular definition should be used. For on-chip applications,
typically no periodicity can be assumed and the acquisition of
the output signal is synchronized to the generation of the input
signal. In this case the linear definition should be used.

B. Computation of the Complex Cross-Correlation

In the case of synchronized acquisition, the cross-correlation
has to be computed only for a small number of time-lags,
which may be done by direct evaluation of (1). However, if all
time-lags need to be calculated, it is more efficient to compute
it in the frequency domain. Defining the signal vectors x, y
and their circular cross-correlation vector rxy by

x = [ x[0] , x[1] , . . . , x[N − 1] ]T (2)

y = [ y[0] , y[1] , . . . , y[N − 1] ]T (3)

rxy = [ rxy[0] , rxy[1] , . . . , rxy[N − 1] ]T (4)

we implement the computation of rxy by [26]

rxy = IFFT
{
(FFT{x})∗ ◦ FFT{y}

}
(5)

where the symbol ◦ is used for element-wise multiplication.
The equivalence of (2)-(5) with the circular version of (1)
follows from two properties of the discrete Fourier transform:

• Multiplication in frequency domain corresponds to
circular convolution in time domain.

• Conjugation in frequency domain corresponds to
conjugation and time-reversal in time domain.

If required, (5) may also be used for linear cross-correlation.
This is done by appending N−1 zeros to (2) and (3), resulting
in appended values of rxy[−(N − 1)] up to rxy[−1] in (4).

For delay estimation, the cross-correlation as defined in (1)
may be used directly, but for comparison it is often useful to
normalize the result to get the correlation coefficient

ρxy[m] =
rxy[m]√

(xHx)(yHy)
(6)

where (·)H represents a Hermitian transpose. The magnitude of
ρxy[m] is in the range between zero and one with ρxx[0] = 1.



Fig. 2. Integer and fractional delay estimation using circular cross-correlation.

C. Delay Estimation

After computing the cross-correlation rxy[m], the integer
delay Dint is estimated by searching for the lag m which
maximizes the magnitude of correlation, expressed by

Dint = argmax
m

∣∣rxy[m]
∣∣. (7)

For fractional delay estimation, a parabola is fitted through the
point of maximum correlation and its neighbors [26]. Defining
ci =

∣∣rxy[Dint + i]
∣∣, the maximum of the parabola is located

from c−1, c0, c+1, giving the fractional delay estimate

Dfrac =
c−1 − c+1

2 (c−1 − 2c0 + c+1)
(8)

and the overall delay estimate D = Dint +Dfrac. An example
for delay estimation using this technique is shown in Fig. 2.

D. Delay Correction

The integer delay is compensated very easily by shifting
either the input or the output signal. For the fractional delay
correction, interpolation is needed. This is implemented very
efficiently by a Farrow filter [27]. In the case of lab-based
measurements with a periodic input signal, the following
technique may be used. Transforming the input signal by

X = FFTSHIFT{FFT{x}} (9)

one gets the spectrum X corresponding to the frequencies

ω =
2π

N
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2
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]T

(10)

in radian per sample. Applying a linear phase shift

Xdelay = X ◦ e−jωD (11)

and transforming back to time domain by

xdelay = IFFT{IFFTSHIFT{Xdelay}} (12)

one gets the delayed time-domain vector xdelay. The delay D
applied in (11) can be any real number of samples and
corresponds to circular sinc interpolation in the time-domain.

Fig. 3. Gain normalization using peak gain and root-mean-square gain.

III. GAIN CORRECTION

The fulfillment of requirement (R2) depends on the operation
point of the power amplifier, the statistics of the source signal
during postdistorter identification and predistorter operation
and the normalization gain during postdistorter identification.
For our present discussion we assume that the gain between
predistorter output and power amplifier input is fixed. At lab-
based measurements using a vector signal generator, a fixed
gain requires that the automatic-level-control is deactivated.
For identification, we use a signal with peaks close to digital
full scale, leading to a compressive characteristic like in Fig. 3.
To linearize this compression, the predistorter has to apply an
expansion on the source signal which increases its crest factor.
A method to ensure that this expansion does not increase the
signal peaks is to normalize by the peak gain [22]

Gpeak =
max |y|
max |x|

(13)

during postdistorter identification. This ensures that clipping
is avoided and requirement (R2) is fulfilled, but it reduces the
gain after linearization and the output power. An alternative is
to normalize by the root-mean-square gain [23]

Grms =
rms{y}
rms{x}

(14)

during postdistorter identification. This ensures that the output
power with and without predistorter is nearly identical, but to
avoid clipping and to fulfill requirement (R2), a digital backoff
must be applied to the source signal, which is given by

Gbackoff =
Gpeak

Grms
=

crestfactor{y}
crestfactor{x}

. (15)

This backoff is equal to the gain reduction if normalization by
the peak gain is used. Therefore, both methods are equivalent
and reduce the output power, compared to the training with
no digital backoff and no predistorter. For a fair performance
comparison with and without predistorter, the digital backoff
has to be applied also in the evaluation without the predistorter.
To increase the output power, the digital backoff may also be
replaced by crest factor reduction of the source signal. [28]



Fig. 4. Comparison of power spectral densities of the output signal.

As an example, Fig. 4 shows the power spectral densities
of the output signals with and without predistorter. The results
for the normalization by Gpeak without digital backoff and the
normalization by Grms with digital backoff are identical.

IV. CONCLUSION

In the present paper, we presented a survey of delay and
gain correction methods for the indirect learning of digital
predistorters. We identified two requirements for the success
of indirect learning and related them to objectives for the
delay and gain correction. For delay correction, we presented
a review of the complex cross-correlation, an efficient method
for its computation and simple methods for integer and frac-
tional delay estimation and correction. For gain correction,
we compared the normalization by the peak gain and the
root-mean-square gain and concluded that both methods are
equivalent if the required digital backoff is included. To get the
same output power without the predistorter, the digital backoff
must be applied also during evaluation without predistorter.
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