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Abstract—Error vector magnitude (EVM) and noise power ra-
tio (NPR) measurements are well-known approaches to quantify
the inband performance of communication systems and their
respective components. In contrast to NPR, EVM is an important
design specification and is widely adopted by modern com-
munication standards such as 802.11 (WLAN). However, EVM
requires full demodulation, whereas NPR excels with simplicity
requiring only power measurements in different frequency bands.
Consequently, NPR measurements avoid bias due to insufficient
synchronization and can be readily adapted to different standards
and bandwidths.

We argue that NPR-inspired measurements can replace EVM
in many practically relevant cases. We show how to set up the
signal generation and analysis for power ratio-based estimation
of EVM in OFDM systems impaired by additive noise, power
amplifier (PA) nonlinearity, phase noise and I/Q imbalance.
Our method samples frequency-dependent inband errors via
a single measurement and can either include or exclude the
effect of I/Q mismatch, by using asymmetric or symmetric stop-
band locations, respectively. We present measurement results
using an 802.11ac PA at different back-offs, corroborating the
practicability and accuracy of our method. Using the same
measurement chain, the mean absolute deviation from the EVM
is less than 0.35 dB.

Index Terms—NPR, EVM, EPR, nonlinearity, phase noise, in-
termodulation distortion, power amplifiers, wireless LAN, OFDM

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is a digital modulation scheme popular in

high-datarate applications like WLAN [1] and LTE [2].
These standards define maximum error vector magnitude
(EVM) values for the transmitted signal. The EVM captures
the effect of various transceiver imperfections, e.g., additive
noise, nonlinearity, I/Q mismatch, and phase noise [3]. As a
result, the EVM features a strong correlation with the overall
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system performance in terms of the bit error rate (BER) [4].
The correlation of EVM and BER can also be understood
as a consequence of two principles of EVM measurements:
First, EVM uses the actual communication signal as a test
signal, exciting the device under test (DUT) in the same
way as during regular operation, which is crucial in case of
a nonlinear DUT [5]. Second, EVM compares demodulated
data symbols based on the Euclidean distance of the observed
data symbols from the ideal symbols. Consequently, the EVM
is a measure of inband error that allows to use symbol-based
correction algorithms. In typical receivers the effect of
linear filtering and common phase error is minimized by
applying equalization and de-rotation, respectively. These two
correction steps are also mandatory for EVM measurements
according to the 802.11 standard [1].

Although the principle of EVM makes it a sought-after and
powerful system level metric, it also comes with the following
drawbacks. First, EVM is sensitive to synchronization errors,
e.g., frequency and timing offsets and mismatches [6]. Second,
an EVM test setup is expensive [4]. Receiver functionality
is required to test a transmitter, and vice versa. Testing a
separate DUT, e.g., an RF PA, even requires a full transceiver.
Advancing to a new standard or bandwidth typically requires
a costly update of the EVM analyzer. Third, it is required
that the whole measurement chain operates linearly at the
full signal bandwidth. This gets increasingly difficult with
increasing bandwidth [7], limiting the measurement floor at
wide bandwidths.

The noise power ratio (NPR) [8]–[11] is a method that does
not need demodulated symbols to quantify the inband error. As
a result, the NPR does not suffer from the EVM’s drawbacks
outlined above. Consequently, NPR is an appealing alternative
to EVM in many practical scenarios, e.g., as an optimization-
objective for digitally enhanced RF systems [12] such as
digital predistorters [13]. However, although the NPR is a
well established metric on its own, literature does not provide
sufficient support for the following hypothesis: The principle
behind NPR allows for accurately estimating EVM in OFDM
systems in case of typical RF transmitter impairments like
phase noise, IQ imbalance, and power amplifier nonlinearity.

Rather, there is prior research indicating that the NPR is
not able to correctly estimate the inband error caused by a
nonlinear DUT [9], [14], discussed in more detail in Sec. II,
below. The only work known to us that explicitly addresses
the relation of EVM and NPR [15] does not cover the issues,
we will show to be relevant for EVM estimation, e.g., the
bandwidth and location of the stop bands of the NPR test
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signal. The relation of EVM and NPR for IQ imbalance and
phase noise has not been addressed at all so far.

We introduce the term error power ratio (EPR) for our
NPR-inspired EVM estimation method, because we define the
EPR as an error to signal ratio, just like the EVM, inversely
to the typical NPR definition. Furthermore, we link some
specifics to the term EPR, e.g., required properties of the test
signal to obtain accurate EVM estimates for OFDM signals,
which further discerns the EPR from the traditional NPR.

In summary, to the best of our knowledge, this paper is the
first to present:
• The effect of IQ mismatch and phase noise on the NPR.
• An analysis and guidance how to setup NPR (EPR)

measurements to accurately estimate EVM in OFDM sys-
tems with phase noise, IQ mismatch and power amplifier
nonlinearity.

• The usage of multiple stop-bands for resolving smooth
frequency-dependent errors with a single measurement.

• A straightforward procedure to obtain an NPR test signal
preserving the statistics of the OFDM signal.

• Measurement results comparing NPR (EPR) with EVM,
over a wide range of inband error levels, using a com-
mercial hardware WLAN EVM analyzer as reference.

The remainder of this paper is organized as follows. Section
II discusses related research. In Section III, we define the
EPR and propose respective test signal generation and analysis
methods. In Section IV, we present typical transmitter impair-
ments and their influence on the EPR and EVM along with
simulation results supporting our findings. Our experimental
test setup and the analysis of hardware measurement results
is presented in Section V. We discuss uncertainty and bias in
Section VII. Section VII concludes this paper. In Appendix A,
we define and discuss OFDM and EVM.

II. FOUNDATIONS OF NPR MEASUREMENTS AND
RELATED RESEARCH

In the following, we discuss prior work on NPR measure-
ments and EVM estimation. We emphasize why our hypothesis
is relevant and that it is neither sufficiently supported, nor
contradicted in prior work.

Classic NPR measurements use band-limited Gaussian noise
with a flat power spectral density (PSD) within the band of
interest and apply a notch (or band-reject, or stop-band) filter
to obtain the test signal [9], [10]. A typical DUT fills the
stop-band with error, e.g., intermodulation distortion due to a
nonlinear DUT [16]. The NPR is obtained by comparing the
DUT output power without the filter, or outside the notch, to
the power within the notch, i.e., the NPR is defined as a signal
(plus error) to error ratio. If the only source of error is additive
white gaussian noise (AWGN), NPR and EVM are inversely
related via the signal to noise ratio (SNR). If, however, the
DUT includes nonlinearity, phase noise or modulator imper-
fections, the inband error depends on the test signal exciting
the DUT. Since the NPR test signal must include at least one
inband notch, it cannot be identical to the EVM test signal.
Therefore, it is not obvious that measurements of NPR can be
used to replace EVM, in cases when the inband error depends

on the test signal. Rather, there is prior research indicating
quite the opposite [9], [14].

Pedro et al. [14] argue that the NPR underestimates the in-
band error up to 7 dB, because they view correlated co-channel
distortion as a relevant source of error. However, Geens et al.
[10] reach the conclusion that the approach in [14] is only valid
if the input to the nonlinear system varies a lot in amplitude.
In most practical cases however, this is not the case and NPR
is a good figure of merit for the inband error [10]. In [17],
Pedro et al. note that for systems where an equalizer gets rid
of dynamic linear effects, and hence the correlated co-channel
distortion, the NPR is a good choice to assess the inband error.
Gharaibeh [9] shows that the NPR overestimates the inband
error of a (quasi-) memoryless nonlinearity by up to 10 dB
if the excitation signal differs significantly from a circularly-
symmetric complex normal (CSCN) distribution, where the
in-phase (I) and quadrature (Q) component are independent
and identically distributed (i.i.d) Gaussian [18]. However, the
NPR is shown to be a good estimate of inband distortion, if
the signal approaches a CSCN distribution. In OFDM systems,
equalizers are ubiquitous and the signal is CSCN distributed.
Consequently, [9], [10], [14] do not contradict our hypothesis.

Traditional NPR measurements use an analog noise source
and an analog filter to generate the test signal [19]. More
recently, digital test signal generation has been proposed [11],
allowing for better repeatability and lower test times [8]. A
multitone signal is generated via inverse fast Fourier transform
(IFFT) of a large number (1k-10k) of tones with random
phases. Equal magnitudes are used in [11], apart from “5 to
10% of the tones” in the center of the bandwidth that are
set to zero to form the stop band. As outlined above, it is
desirable to have a test signal matching the statistics of the
communication signal of interest. Therefore, the higher order
cross PSDs of a multitone can be optimized [5], which is
however computationally demanding [20]. For matching the
distribution of each individual sample of an OFDM signal,
such an optimization is not necessary, because summing a
large number of random phase tones yields independent CSCN
distributed samples. However, OFDM uses a cyclic prefix and
oversampling may be applied via zero-padding before the IFFT
[21]. Consequently, the samples are not independent. Rather,
there is correlation, manifesting in a PSD different to the PSD
obtained from a signal with random phases as discussed above.

The shape of the PSD is important when assessing the out-
of band behavior, e.g., spectral mask [1] or adjacent channel
leakage ratio (ACLR) [2]. It is desirable to have an NPR
signal matching the out-of-band PSD of the OFDM signal,
because this allows for measuring the inband error (NPR) and
the out-of-band performance with the same test signal. With
established NPR test signals [11] this is not advisable, because
they are strictly bandlimited.

EVM estimation has also been addressed in the context of
pass/fail tests with automatic test equipment (ATE) [22], [23]
with the goal to reduce measurement time and cost. These
methods differ from our approach by the fact that the type of
DUT is assumed to be known, and an approved prototype of
the DUT is available. The prototype is used to train surrogate
models and decision (pass/fail) rules.
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Fig. 1. Principle of the error power ratio (EPR). The EPR is our approach to estimate EVM based on the principle of NPR. The source s is the communication
signal of interest. Depicted is a WLAN signal with 20 MHz bandwidth. We obtain the test signal x by digitally filtering s to attenuate parts of the inband,
achieving steep stop-band notches. The device under test (DUT) introduces errors, which rise the power in the stopbands of the DUT output y. The EPR is
the ratio between average power in the stopbands and average power in the inband of y.
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Fig. 2. Close-up of the third stopband M3 from Fig. 1. The baseband center frequency is at 2.1875 MHz, i.e., ωc,3 = 7∆f2π, with the WLAN OFDM
subcarrier spacing being ∆f = 312.5 kHz. We choose the stopband-width for integrating the error power as BWstop = ∆f . The filter stopband M̃3 with
bandwidth B̃Wstop = 1.3∆f is chosen to be slightly wider to account for the practically limited filter slope steepness.

III. ERROR POWER RATIO

As outlined in the introduction, we use the term error power
ratio (EPR) to distinguish our EVM estimation method from
the traditional NPR [8], [16]. The principle of the EPR is
depicted in Fig. 1. In Fig. 2, we zoom into the third stopband
and illustrate the notation used in the definition of the EPR
below.

A. Notation

Consider a baseband signal x̃(t) modulated to an angu-
lar carrier frequency ω0 = 2πf0, where t denotes time.
The corresponding radio frequency signal is xRF(t) =
R{x̃(t) exp ω0t}, where 2 = −1. The real and imaginary
part of x̃(t) are denoted by R{x̃(t)} = x̃I(t), and I{x̃(t)} =
x̃Q(t), respectively. In cases where it is not relevant whether
we are in baseband or RF, we simply use the notation x(t).
For discrete time signals, we use the notation x[n]. We use
boldface notation for vectors e.g., ω = [ω1, . . . , ωN ]T , where
T denotes transposition.

The power spectral density (PSD) of an ergodic, wide
sense stationary random signal x(t) is given as Sx(ω) =∫∞
−∞Rx(τ)e−ωτdτ , with the auto correlation function de-

fined as the expectation Rx(τ) = E {x∗(t)x(t+ τ)} . We
denote the average PSD of x(t) over a frequency-set K as

S̄x(K) =
1

λ(K)

∫
ω∈K

Sx(ω) dω , (1)

where λ(K) is the Lebesque measure of the set K, i.e., the
overall bandwidth of the integration.

B. Definition

We define the EPR of a signal x(t) as

EPR{x(t)} =
S̄x(M)

S̄x(P)
, (2)

i.e., we compare the PSD of x(t) averaged over different
frequency sets M and P . Here, M is the set of stop-band
frequencies

M =

NM⋃
m=1

Mm , (3)

i.e., the union of NM ∈ N : NM ≥ 1 individual stop-bands
Mm. We define the m-th stop-bandMm as the set of angular
frequencies satisfying

Mm = {ω ∈ R : ωa,m ≤ ω < ωb,m} , (4)

where ωa,m = ωc,m− BWstop,m

2 and ωb,m = ωc,m +
BWstop,m

2
are the start and stop frequency of the m-th stop-band with
center frequency ωc,m and stop-band bandwidth BWstop,m,
respectively, as illustrated in Fig. 2. Analogously to (4), the set
of present bands is denoted as P =

⋃NP
p=1 Pp, with Pp = {ω ∈

R : ωa,p ≤ ω < ωb,p}. To compare the EPR of individual
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stopbands with subcarrier-dependent EVM values as defined
in (38) in the Appendix A-B, we define

EPR(km) =
S̄x(Mm)

S̄x(P)
, (5)

where Mm has a center frequency at ωc,m = km∆f , where
km is the OFDM subcarrier index belonging to the mth
stopband center, and ∆f is the subcarrier spacing. With equal
stopband bandwidth BWstop,m = ∆f , the overall EPR as
in (2) is the mean over the subcarrier-dependent EPRs, i.e.,

1
NM

∑NM
m=1 EPR(km).

Our goal is to use the EPR of the DUT response y(t), i.e.,
EPR{y(t)} for estimating the EVM. For that purpose, two
constraints are necessary in the definition of (2):

1) Sufficient test-signal stop-band rejection: The EPR of
the test signal x(t) used to excite the DUT must be smaller
than the expected error vector power (EVP) to estimate. The
EVP is the square of the EVM and defined in Appendix
A-B. As depicted in Fig. 2 our test signal generation and
analysis achieves approximately −90 dB stopband rejection,
which is well below the expected EVM of typical transceiver
components. A stopband rejection of RM = −10 log10 (ε) dB
means

S̄x(M) = εS̄x(P) . (6)

2) Reasonable selection of P and M: To achieve require-
ment 1), i.e., small EPR{x(t)}, and to provide maximum
averaging over frequency, P should cover the whole signal
bandwidth with exclusion of the stop-band and transition-
band frequencies M̃, as indicated in Fig. 2. As discussed
in Sec. IV, a good choice for the individual stop-bandwidths
is the OFDM subcarrier-spacing, i.e., BWstop,m = ∆f . The
optimum number and center frequencies of the stop-bands
Mm is problem-dependent. Setting Nm too high, i.e. using
to many missing bands increases the likelihood of altering the
signal statistics significantly. By setting Nm = 1 frequency-
dependent errors cannot be resolved in a single measurement
and there is only little averaging of missing band power,
which increases the variance of the estimator. A convenient
choice for Nm and ωc is using the pilot-tone locations of
the OFDM signal standard, e.g., subcarriers [−21,−7, 7, 21]
for the 20–MHz WLAN signal in Fig. 1. This way, smooth
frequency-dependent errors can be resolved and an increase in
bandwidth increases the number of stop-bands. Furthermore,
the EPR can be readily compared with the EVM averaged only
over the pilots which is provided by typical EVM analyzers.
However, one has to be aware that by using the symmetric
pilot locations as stop-band centers, IQ mismatch is excluded
from the EPR, as shown in Sec. IV. We further discuss the
placement of the stopbands in Sec. IV and Sec. VI-B.

C. Signal Generation

We use a digital approach to generate a test signal x[n].
In a measurement scenario where an analog signal x(t) is
required, we copy the signal vector vX = {x[n]} to the
memory of a signal generator which performs the required
digital to analog conversion (DAC). Similar to Reveyrand
et al. , [11], [16], we generate vX by means of an IFFT,

i.e., vX = ifft(vXf). However, instead of using constant
amplitudes and random phases as in [11], we obtain the
frequency-domain vector vXf via an FFT of the communi-
cation signal vector vX, and set those bins that correspond
to stopband frequencies ω ∈ M̃ to zero before the IFFT,
i.e., vXf = fft(vS); vXf(vIndexNull) = 0. Here,
M̃ ⊃M indicates that we set broader bands to zero than the
actual integration range M used to compute the EPR in (2).
M̃ includes the same center frequencies ωc,m asM in (4). The
only difference is that we use B̃Wstop,m = Kstop BWstop,m,
Kstop ∈ R : Kstop ≥ 1 to form M̃, as shown in Fig. 2.
If not stated otherwise, we use Kstop = 1.3. This way, we
accommodate for the limited steepness of the PSD analysis
window, see Sec. III-D, below. Furthermore, using broader
stop-bands increases the robustness against clock frequency
offset.

The proposed multiplication in the frequency domain with
zero at the bins to be nulled, and one otherwise, corresponds
to a circular (cyclic) convolution in the time domain. This
is welcome in measurement applications, because a typical
signal generator repeats the signal vector continuously, i.e., it
is periodically extended. In contrast to repeating a linearly-
filtered signal vector, no discontinuities occur due to the
repetition of the circularly-filtered signal vector. Consequently,
we do not require synchronization when analyzing the signal.

In Sec. II, we have already highlighted the importance of
using a test signal matching the statistics of the communication
signal and that OFDM signals are CSCN distributed. A test
signal xNPR[n] generated with the method in [16] approaches
a CSCN distribution, because the phases are independent
random variables. Since a CSCN signal is invariant to lin-
ear filtering [18], also our method delivers a CSCN signal.
We denote the test signal generated with our method with
xEPR[n]. However, even if the distributions of the individual
samples of two signals are the same, the PSDs can be quite
different. A signal xNPR[n] generated with i.i.d random phases
does not include possible correlations due to cyclic prefix,
windowed overlap and oversampling via IFFT zero padding.
Consequently, the PSD Sx,NPR(f) is strictly band-limited, as
shown in Fig. 3. In contrast, the PSD of our EPR test signal
Sx,EPR(f) resembles the PSD Ss(f) of the communication
signal s(t). Consequently, out-of-band measurements using
an EPR test signal generated with our approach lead to
results well comparable with those made with the actual
communication signal s(t). Summing up, our signal generation
approach allows for measurements of out-of-band metrics, e.g.,
spectral mask [1] or ACLR [2], with the same signal that is
used for measuring the inband error.

D. Signal Analysis

To obtain the EPR from the DUT output signal, we propose
the following two approaches. The first is based on PSD-
estimation via analyzing the baseband time-domain (TD) DUT
output, whereas the second uses a swept-tuned (ST) spectrum
analyzer to measure the DUT output power in different bands.
The advantage of the TD method is that the same analyzer
code can be used in measurements and simulations. The ST
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Fig. 3. PSDs of three different test signals generated and analyzed on a PC
(not measured). Ss(f) is the PSD estimate of a 320-symbol WLAN signal
with 20 MHz bandwidth oversampled in the IFFT to 60 MHz. In contrast
to the traditional NPR signal generation resulting in a strictly band-limited
Sx,NPR(f), our EPR test signal Sx,EPR[n] features the same out-of-band
behavior as the original communication signal Ss(f).

method unites all the advantages outlined in Sec. I, when
making measurements. In particular, the ST method does not
require analog to digital converters (ADCs) able to sample the
entire signal bandwidth with high accuracy.

1) Time Domain (TD) Approach: Given

ỹ =
[
ỹ[n], ỹ[n− 1], . . . , ỹ[n−N + 1]

]T
, (7)

i.e., N samples of the digitized baseband-equivalent of the
DUT output ỹ[n] = ỹ(nTs), where fs = 1

Ts
is the sample rate

in Hz, we use Welch’s periodogram method [24] to estimate
the PSD Sỹ(ωk) on a discrete frequency grid ωk = k2πfs

K ,
K ∈ N, k ∈ Z : d−K/2e ≤ k ≤ dK/2e−1, where d·e denotes
the ceiling operator. The number of averaged periodograms is
Navg = bN−KKolap

c+ 1, where K is the FFT length, Kolap is the
window overlap in samples, and b·c is the floor operator. Once
we have Sỹ(ωk) the EPR is computed like in (2), however, due
to discrete frequency grid the integrals turn into sums.

In our WLAN application, we typically use a resolution
of fs/K = 10 kHz, a four-term minimum sidelobe Nuttall
window [25], and 50% overlap, i.e., Kolap = d0.5Ke. This is
also the setting we use in all our PSD plots, e.g., in Fig. 3.
Note that if the resolution was too high, e.g., 50 kHz instead
of 10 kHz, we would not be able to resolve the steep stopband
notches anymore. For the same reason, a window with good
side-lobe behavior is crucial for the analysis. Given the PSD
estimate, we just need to implement (2) by averaging over the
respective PSD frequency bins to obtain the EPR.

As can be seen from Fig. 3, our PSD analysis setup
can resolve EPRs down to −90 dB, which is enough for
typical transceiver building blocks. With a rectangular analysis
window-length exactly matching the IFFT-length of the signal
generation, there is theoretically no lower limit on the EPR,
i.e., the bins set to zero remain zero if there is no error. Since
the power is integrated in (2), the lack of averaging is not a
problem in practice. However, a slight mismatch of synthesis
and analysis window-length, e.g., due to mismatches in DAC
and ADC clock, drastically deteriorates the achievable floor. In
contrast, the proposed windowed PSD estimation is insensitive
to window-length mismatch.

2) Swept-Tuned (ST) Approach: Swept-tuned analyzers
tune into different analysis frequencies by sweeping the local
oscillator frequency of the down-mixer, from a start frequency
fsw,a to a stop frequency fsw,b during a sweep time Tsw.
This sweep is used to mix the input signal down to an
intermediate frequency (IF). At time t, the signal frequency
mixed to IF, is fsw(t) = fsw,a + fspan mod(t, Tsw)/Tsw,
where fspan = fsw,b − fsw,a. The center frequency is
fsw,c = (fsw,a + fsw,b)/2. After downmixing to IF, the
signal is filtered with a band-pass filter (BPF) centered at
IF. This BPF determines the resolution bandwidth (RBW)
of the spectral analysis. The power of the BPF output is
measured using an envelope detector, whose output is further
smoothed by a so-called video bandwidth (VBW) filter. Swept-
tuned analyzers typically offer several detector modes. To
minimize bias, an RMS detector should be used not only when
measuring absolute power [26] but also when making power
ratio measurements [27].

By sweeping the whole bandwidth of the signal with a fine
RBW, it is possible to get a PSD estimate similar to the TD
method. However, such a measurement can take a significant
amount of time, e.g., 10 seconds, since the sweep time must
be high for high values of fspan and low values of RBW.
More precisely,

Tsw = C
fspan

RBW2 , (8)

where C is a dimensionless constant [28]. By tuning into each
stop band separately, we can achieve faster measurements: To
obtain the average stop-band PSD S̄y(M) in the numerator of
(2), we make NM separate sweeps and set the m-th sweep’s
start and stop frequency to the m-th stop-band’s start and stop
frequencies, i.e., ωa,m2π and ωb,m

2π , respectively. The RBW must
be small enough to prevent including power in the slope of
neighboring present-bands. In our WLAN application we use
an RBW of 10 kHz, C = 10, and fspan = 312.5 kHz.

To obtain the average present-band PSD S̄y(P), we could
proceed similarly as for S̄y(M) above and make NP separate
measurements. However, we again advocate for an approach
decreasing the measurement time: We make a single sweep
over the whole bandwidth of the signal, since the contribution
of the missing bands S̄y(M) to S̄y(P) is negligible for typical
inband error values of interest. For instance, if the true inband
error is ≤ −20 dB, we obtain −20.04 dB = 10 lg(0.01/(1 +
0.01)). Since the stopbands do not have to be resolved here,
the RBW can be relatively high. We use fspan

RBW = 200, yielding
RBW = 200 kHz for a signal with a bandwidth of fspan =
40 MHz. With C = 100 we still get Tsw in the order of
100 ms. Though the power is integrated over the full signal
bandwidth fspan, it is important to normalize by the present-
bandwidth λ(P) when computing S̄y(P).

IV. TRANSCEIVER IMPAIRMENTS AND THEIR INFLUENCE
ON EPR AND EVM

In the following, we review common analog transceiver
impairments and discuss their influence on the EPR and EVM.
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Fig. 4. Simulated EPR estimation error in case of additive noise for two
different stopband rejection factors RM. At high SNR (−90 dB EVM), the
EPR overestimates the EVM, because of the bias due to the limited stopband
rejection. At low SNR (0 dB EVM) the EPR underestimates the EVM because
we defined the EPR as an error to signal plus error ratio.

A. Additive Noise

Consider the following signal model

y(t) = x(t) + v(t) , (9)

where x(t) = h(t) ∗ s(t), s(t) denotes the signal, h(t) is an
impulse response, and ∗ denotes convolution. Assuming the
noise v(t) to be uncorrelated with x(t), the PSD of y(t) is

Sy(ω) = Sx(ω) + Sv(ω) . (10)

Inserting in the definition of the EPR in (2) yields

EPR{y(t)} =
S̄y(M)

S̄y(P)
(11)

=
S̄x(M) + S̄v(M)

S̄x(P) + S̄v(P)
(12)

Assuming an EPR test signal x(t), (6) holds, i.e., S̄x(M) =
εS̄x(P). If we furthermore assume S̄v(M) = S̄v(P) , i.e., the
noise power averaged over the stopband is representative for
the noise at the present bands, (12) becomes

EPR{y(t)} =
εS̄x(P) + S̄v(P)

S̄x(P) + S̄v(P)
=
εξ + 1

ξ + 1
≈ 1

ξ
, (13)

where ξ = S̄x(P)/S̄v(P). The approximation in (13) holds
for ε � ξ and ξ � 1. With SNR = 10 log10 (ξ), RM =
−10 log10 (ε), and EVM = −SNR as derived in Appendix
A-C, we obtain the result depicted in Fig. 4.

Note that the fixed, systematic bias at high EVMs results
from the definition of EPR as an error to signal plus error
ratio and could be easily removed, whereas the bias at low
EVM could be decreased by increasing the stopband rejection
RM. In most practically relevant cases, however, covering the
range between −70 and −10 dB EVM is sufficient and bias
correction is not necessary.

The PSD of the source signal s(t) filtered with h(t) is
Sx(ω) = |H(ω)|2Ss(ω). If the filter preserves the power of
the communication signal s(t), the SNR is not affected by h(t)
and we have S̄x(P) = S̄s(P). Because of the integral nature
of S̄ and the EPR, the exact frequency dependent behavior of
H(ω) is irrelevant to the EPR. The EPR behaves like data-
aided EVM with a perfect equalizer.

B. Nonlinearity

In case of nonlinear DUT, e.g., a power amplifier (PA), the
distorted DUT output can be decomposed into a correlated
component and an additive uncorrelated distortion noise com-
ponent [9]. The major difference to the additive noise scenario
above is that the distortion noise is not independent from
the excitation signal x(t), i.e., the excitation signal affects
the effective inband SNR, in general. However, if the EPR
test signal has similar amplitude statistics like the EVM test
signal, the effective inband SNR is the same in an EVM
and EPR measurement, and consequently the EPR is able to
estimate EVM for nonlinear DUTs. To make this more clear,
we investigate a third-order polynomial system

yRF(t) = c1xRF(t) + c3x
3
RF(t) . (14)

Assuming a Gaussian input signal xRF(t), the autocorrelation
function of (14) is given as [10]

Ry(τ) = (c1 + 3c3Rx(0))2Rx(τ) + 6c23R
3
x(τ) . (15)

Consequently, the PSD of the output signal is

Sy(ω) =(c21 + 6c1c3σ
2
x + 9c23σ

4
x)Sx(ω) + 6c23Sx,3∗(ω), (16)

with the three-fold convolution term

Sx,3∗(ω) = (Sx ∗ Sx ∗ Sx)(ω) , (17)

and the variance of the input signal σ2
x = Rx(0) (a zero

mean distribution of x(t) is presumed for this abbreviation).
In OFDM receivers, in each frame, new equalizer coefficients
are estimated from the preamble. If the source signal and the
nonlinear system are stationary within one frame, which is
a reasonable assumption for OFDM and power amplifiers,
the first three terms in (16) cannot be distinguished. Con-
sequently, the whole gain factor c21 + 6c1c3σ

2
x + 9c23σ

4
x gets

equalized. Hence, only the uncorrelated distortion 6c23Sx,3∗(ω)
contributes to the EVM.

By inserting (16) in the definition of EPR in (2), we see
that the EPR only captures the last term due to the missing
excitation at the stop-bands Sx(ω)|ω∈M ≈ 0. This rejection of
correlated distortion is a welcome feature, because it resembles
the effect of using an equalizer in EVM tests, as discussed
above. If we have a system with higher order, we get additional
higher-order convolution terms, but the principle remains the
same. Also, the extension to a Wiener-Hammerstein model,
i.e., a static nonlinearity between two linear filters introducing
memory, is straightforward: Sy(ω) = F {Sx(ω)} in (16)
becomes

Sy(ω) = |Hpost(ω)|2F
{
|Hpre(ω)|2Sx(ω)

}
. (18)

Although the input and the output of the nonlinearity are
frequency-weighed, it is clear that (18) can again be decom-
posed into a correlated term and an uncorrelated term. This
holds even for more complicated nonlinearites with memory,
as explained by the Bussgang theorem [9].

The EPR is completely blind to the correlated term includ-
ing the correlated distortion, e.g., 6c1c3σ

2
x + 9c23σ

4
x in (16)

that arises if we have a non-zero third-order coefficient c3.
A linear equalizer can compensate the correlated distortion,
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Fig. 5. Wiener PA model simulation. Top plot: zoomed version of bottom plot
with abscissa in multiples of the OFDM tonespacing ∆f . At the stop-band
center frequencies ωc,M = {−21,−7, 7, 21} · 2π∆f , the EPR resembles
the EVM with equalizer (EQ) at these tones.

since it is, for each OFDM frame, just a weighting factor that
is frequency-dependent for nonlinearities with memory. The
nonlinear nature of the weighting factor is apparent in (16)
because it depends on the test signal power σ2

x. This is however
not a problem for frame-based equalization because σ2

x is
constant within an OFDM frame. To have an EPR resembling
the EVM, the EVM analyzer’s equalizer must be able to
correct the correlated distortion sufficiently. With OFDM, this
is typically the case if the nonlinear memory effects are shorter
than the cyclic prefix length.

Another important issue with nonlinearities that have mem-
ory is that the error (the uncorrelated distortion) is, in general,
frequency-dependent. To estimate EVM correctly, the error
observed in the EPR stopbands must be representative for
the error of the whole inband, as we also required for (13).
The individual stopband EPRs resemble the EVM at these fre-
quencies which is illustrated in Fig. 5. The overall EPR is the
mean over the individual stopband EPRs as defined in (5). The
overall EVM is the mean over the EVM at all data subcarriers.
If the mean over the EVM at the stopband subcarriers differs
from the overall EVM, the single-measurement multi-stopband
EPR will also differ from the overall EVM.

In practice, most transceiver DUTs feature an error that
is well-behaved, i.e., not changing abruptly over the inband
frequencies. If, however, there is reason to expect highly
frequency-dependent error, e.g., when a dynamic element
matching DAC [29] is part of the DUT, there is the possibility
of making several measurements with different stop-band
frequencies.

Fig. 5 illustrates the EPR for the Wiener PA model from
[30]. This model consists of an FIR filter with coefficients
[0.7692, 0.1538, 0.0769] followed by a quasi-memoryless [31]
nonlinear model [32] given as

ỹ[n] =
1.1x̃[n]

1 + 0.3 |x̃[n]|2
exp

j0.8 |x̃[n]|2

1 + 3 |x̃[n]|2
. (19)

In the simulation belonging to Fig. 5, the EVM without
equalizer is −16.2 dB, whereas it is −32.7 dB with equalizer.
The EPR is also −32.7 dB, i.e., it equals the EVM with
equalizer.

Note that (14) is a continuous-time passband model,

1

Frequency (∆f)

dB
dB

PSD Sx(f)
EPR Input

PSD Sy(f)
EPR Output
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EVM without

−40
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Fig. 6. Phase noise simulation illustrating the importance of the stopband-
width BWstop for EVM estimation. Bottom: EPR test signal PSD, DUT
output PSD, and EVM per subcarrier. Top: Zoomed missing bands. Left: With
BWstop = ∆f , i.e., the missing bandwidth equals the OFDM tonespacing,
good estimates of EVM with de-rotation (phase tracking) can be expected.
Middle: With BWstop = 6∆f , the EPR underestimates the EVM. Right:
With BWstop = 0.1∆f , the EPR overestimates the EVM with de-rotation.

whereas the equalizer is typically estimated from discrete-time
baseband data. Still, the above argumentation on the EVM and
the equalizer is valid, because when mapping from passband
to baseband, the polynomial structure is obtained. Only the
coefficient values get scaled with factors depending on their
order [31], [33]. The autocorrelation for a baseband third-order
nonlinearity can be found in (5.37) in [9].

C. Phase Noise

Phase noise occurs due to jitter of the local oscillator (LO)
of the mixer. A baseband model for phase noise is

ỹ(t) = x̃(t)eφ(t) ≈ x̃(t) + x̃(t)φ(t) . (20)

where φ(t) is the phase noise with PSD Sφ(ω). The first-
order Taylor series approximation in (20) is valid if φ(t) <<
1, which is a reasonable assumption for LOs in modern
transceivers [3]. The PSD of ỹ(t) is hence

Sy(ω) ≈ Sx(ω) + (Sx ∗ Sφ) (ω) . (21)

The additive error term Se,PN (ω) = (Sx ∗ Sφ) (ω) is statis-
tically dependent on Sx(ω). A double-side-band PLL phase
noise model L(f) =

√
2Sφ(2πf) is given as [3]

L(f) =
B2

PLLL0

B2
PLL + f2

(
1 +

fcorner

f
+ Lfloor

)
, (22)

where f > 0 denotes the frequency offset from the carrier,
BPLL is the PLL −3 dB bandwidth and L0 is the inband phase
noise level in rad2/Hz, fcorner is the flicker corner frequency,
and Lfloor the noise floor. Depending on the bandwidth of
Sφ(ω) compared to the OFDM subcarrier spacing ∆f , two
cases can be distinguished: Inter-carrier interference (ICI)
prevails if BWPLL > ∆f/2 and common phase error (CPE) is
dominant if BWPLL < ∆f/2. While it is very hard to remove
ICI in a receiver, CPE can be mitigated by phase tracking
[3]. Phase tracking is mandatory for EVM measurements
according to the 802.11ac WLAN standard [1].

With EPR, the convolution in (21) spills power from
neighboring present bands into the stop-band. Since CPE can
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Fig. 7. IQ mismatch simulation illustrating the importance of the missing band
locations ωc,m.With the symmetric tones at ±7∆f , IQ mismatch is excluded.
With asymmetric locations (−21,+23)∆f , IQ mismatch is included.

be corrected in EVM, we do not want CPE in our stop-
band, contributing to the error power in the numerator of (2).
Similarly, we want ICI to contribute to the stop-band power
because it is also included in EVM. Since what is considered
ICI and what is CPE depends solely on ∆f for a given phase
noise bandwidth, it is clear that also our stop-band width
BWstop must be related to ∆f . As can be seen in Fig. 6,
using BWstop = ∆f works fine for estimating the EVM with
activated phase tracking. For Fig. 6, we used rather narrow-
band phase-noise with BPLL = 10 kHz, fcorner = 0.5 kHz,
Lfloor = −150 dB, and L0 = −90 dB in order to clearly
see the differences between EVM with and without phase
tracking and the influence of different stop-band widths. As
shown in the measurement chapter V, BWstop = ∆f is
however also appropriate for higher phase noise bandwidths,
e.g., BPLL = 160 kHz.

D. IQ Mismatch

A baseband model for transmitter IQ mismatch is [34]

ỹ(t) = (x̃ ∗ g1)(t) + (x̃∗ ∗ g2)(t) , (23)

i.e., x̃(t) = x̃I(t) + x̃Q(t) and its conjugate x̃∗(t) are
convolved with impulse responses (IRs) given as

g̃1(t) =
(
h̃I(t) + geϕh̃Q(t)

)
/2 , (24a)

g̃2(t) =
(
h̃I(t)− geϕh̃Q(t)

)
/2 . (24b)

Here, g is the mixer amplitude imbalance factor, ϕ the phase
imbalance, and h̃I(t) and h̃Q(t) the IRs of the the in-phase
and quadrature path of the D/A converter, respectively. The
power spectral density (PSD) of (23) is

Sy(ω) = |G1(ω)|2 Sx(ω) + |G2(ω)|2 Sx(−ω) , (25)

where |Gi(ω)| is the Fourier transform of g̃i(t), with i ∈
{1, 2}. If |G2(ω)| > 0, there is IQ mismatch, and an exci-
tation at ω0 causes interference at the mirrored frequency −ω0.

With EPR, we can choose where to place the stop-bands.
Placing them symmetrically around ω = 0, excludes IQ
mismatch, because then there is no excitation at mirrored
frequencies. If, however, the stop-bands are chosen to be
asymmetric, the effect of IQ mismatch is included in the EPR
result. In practice this can be very helpful when trying to sort

out whether IQ imbalance is the limiting factor that determines
the inband-error. By contrast, this is not possible with EVM,
since EVM does not allow for excluding IQ mismatch. In
Fig. 7, we illustrate the EVM and EPR for an IQ mismatch
simulation. The used IQ mismatch model is a discrete-time
equivalent of (23) with

h̃I [n] = 0.98δ[n] + 0.02δ[n− 1] (26a)
h̃Q[n] = 0.94δ[n] + 0.06δ[n− 1] (26b)
geϕ = 1.01 · exp (π2π/360) (26c)

where δ[n] is the delta impulse sequence, i.e., we use two-
tap FIR filters to model frequency-dependent mismatch of the
DAC’s I- and Q-path, a gain imbalance factor g = 1.01 and
π degree phase imbalance.

In Fig. 7, we use an EPR test signal Sx(f) featuring four
stop-bands. Two of these stop-bands (±7∆f ) are symmetric
around zero, whereas the other two are at (−21,+23)∆f , i.e.,
they are asymmetric and do not have an equivalent mirrored
around zero. The simulation confirms our analysis above:
The symmetric stop-bands are blind to IQ mismatch, i.e.,
the output PSD resembles the input PSD at these bands.
If we only use symmetric bands to compute the EPR, we
get nearly −90 dB, i.e., the best our analysis window can
achieve, although there is strong IQ mismatch. The asymmetric
bands (−21,+23)∆f , on the other hand, accurately sample the
frequency-dependent error, depicted as EVM per subcarrier.
Using only asymmetric stop-bands allows to estimate EVM if
IQ mismatch is considered as a part of the DUT. Using both
symmetric and asymmetric locations at the same time as in
Fig. 7, allows for checking whether the error is dominated by
IQ mismatch by just looking at the PSD.

As also discussed in Sec. IV-B, for frequency-dependent
inband error, the mean over the error at the stopbands must
approach the overall error. If this is fulfilled the configuration
of the asymmetric stopband is not crucial as long as there is
no attenuation of the test signal PSD at mirror-frequencies of
the EPR integration range. In Fig. 7, we used (−21, 23)∆f ,
i.e. a stopband offset of 2∆f to achieve asymmetry. Using
only 1∆f would not suffice, because the stopband transition
would create attenuation at a mirror frequency.

V. MEASUREMENT RESULTS

To verify the proposed EPR measurement method experi-
mentally, we made measurements comparing EVM with EPR.
Our measurement setup is depicted in Fig. 8. We use a PC
connected to the Agilent MXG signal generator and an R&S
FSQ Analyzer via LAN. The FSQ’s 10 MHz sync output is
connected to the MXG’s 10 MHz sync input.

A. Signal Generation

We generate the 802.11ac source signal s̃[n] using a PC run-
ning MATLAB and the VHT waveform generator tool cited in
Annex S of [1]. Unless otherwise stated, we use a single burst
with 320 data symbols, 40 MHz bandwidth, and modulation
coding scheme (MCS) 1, i.e., QPSK subcarrier modulation.
Upsampling to a sample rate of 160 MHz is achieved by zero-
padding in the IFFT. For generating EPR excitation signals,
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Fig. 8. Measurement setup including a PC with MATLAB, Agilent MXG
signal generator, and R&S FSQ analyzer. As nonlinear DUT we use an RFMD
RFPA5522 power amplifier (PA) with a 10 dB attenuator at its output.

we filter ˜s[n] according to section III-C. We use the standard
pilot tone locations {−53,−25,−11,+11,+25,+53} for our
center frequencies ωc,m to obtain symmetric stop-bands. For
asymmetric locations, we offset the positive tones by −2, i.e.,
we use {−53,−25,−11,+9,+23,+51}. After downloading
the signal x̃[n] to the MXG, the MXG converts the digital
baseband signal to an analog RF signal, centered at 5.6 GHz.

B. Device Under Test

As nonlinear DUT, we use an RFMD RFPA 5522, a
commercially available, three stage power amplifier (PA)
for 802.11a/n/ac applications. To operate the PA in a wide
range, from a linear regime to deep saturation, we sweep
through the following 15 MXG analog output gain values:
{−30,−25,−20,−15,−12.5,−10,−9, . . . ,−1} dB. To test
the effect of IQ mismatch and phase noise on EVM and EPR,
we add IQ-mismatch and phase noise to the baseband signal
in MATLAB, using the models discussed in Sec. IV. The
IQ-mismatch model is given in (26). For the phase noise
profile in (22), we used the parameters BPLL = 160 kHz,
fcorner = 2 kHz, Lfloor = −170 dB, and L0 = −93 dB.
To get the lowest measurable inband error for reference, we
made measurements connecting the MXG’s RF output directly
to the FSQ’s RF input via an RF cable. However, we were able
to measure the lowest inband error by including the PA and
the 10 -dB attenuator in the measurement chain and drive it
at a low level (around 2 dBm), because the PA is linear at
low levels. The resulting reference (best) RF chain results are
summarized in Table I and correspond to the leftmost data
points of the PA power sweep depicted in Fig. 9.

C. EVM and EPR Analysis Methods

We use the FSQ analyzer in three different measurement
modes, depending on the EVM or EPR measurement ap-
proach, as described in the following. To have a reference
to compare our own EVM analyzer code implemented in
MATLAB, we used the K91ac EVM analyzer firmware
running on the FSQ. We use phase tracking, and make
channel estimation on preamble and data. We refer to the
resulting average EVM over all data subcarriers as EVMFSQ.
Furthermore, we are interested in the EVM at the pilot tones

EVMFSQ,pilots, since our EPR stop-bands are also at the pilot
locations, and we expect the FSQ’s phase-tracking algorithm
to achieve the lowest EVM at the pilot-tones.

Our own, data-aided EVM analyzer implemented in
MATLAB analyzes time-domain (TD) baseband data, hence
we refer to it as EVMTD. In contrast to the FSQ’s proprietary
analyzer, we can use our EVM analyzer in simulations, and
have full understanding of the processing. In measurements,
we obtain the baseband data via the FSQ’s I/Q mode data
transfer functionality, i.e., the FSQ downconverts the signal
from 5.6 GHz to baseband and analog to digital conversion.

For EPRTD, i.e., the EPR based on PSD estimation using
TD data, the measurement chain is exactly the same as
for EVMTD, only the excitation signal and the analysis is
different. Having the same measurement chain for EPRTD and
EVMTD is beneficial when directly comparing the results.

D. Calibration

The FSQ’s input attenuator (ATT) and vertical reference
(VREF) settings are crucial for obtaining best (lowest) and
comparable results. Particularly at EVMs below −30 dB, we
observed that the FSQ’s automatic ATT and VREF selection
delivers results several dB worse than those obtained with
manually optimized settings. Furthermore, the best settings are
not necessarily the same in the different modes (WLAN, TD-
IQ, swept-tuned channel power measurement). Accordingly,
for each tested power level, we optimized the ATT and VREF
setting to achieve the lowest EVM or EPR, for each method.
Since the signal path is exactly the same for EPRTD and
EVMTD, also the optimal ATT and VREF settings are the
same.

The generator and the analyzer we used receive yearly
calibration by the manufacturer. Apart from the selection of
the ATT and VREF setting as described above, user calibration
is not very critical, because we are using a signal analyzer and
not a network analyzer. Furthermore, we are only interested in
comparing different methods (EVM, EPR) and not so much in
the absolute accuracy, e.g., regarding the power measurement.
The different analysis methods (EVM, EPR) themselves do
not need absolute power, but power ratios. Consequently,
systematic errors in the absolute power level are excluded
from the result in the ordinate of Fig. 9 by design. The
absolute power measurements varied up to 0.3 dB between the
different analysis methods. We removed this variation from
our results by using the same data (the power measured with
the EVMTD) for the abscissa of all the different methods in
Fig. 9. This is valid, because of the following: All excitation
signals are scaled digitally to have exactly the same power.
The measurement chain (generator, cables, PA) is always the
same and differences in output power due to (slightly) different
signal statistics (e.g., PAPR) are negligible. Consequently, it
is reasonable that the power at the output of the DUT is the
same for all analysis methods.

E. Results

The results of the PA power sweep are depicted in Fig. 9.
The wide range of tested EVM conditions can be seen from
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Fig. 9. Inband error (IBE) measurement results comparing several methods/settings for EVM and EPR. The DUT is a WLAN power amplifier (PA). The
signal generator’s output gain is swept. (a) PA measurement. (b) Same data as (a), but deviation from EVMFSQ is shown. (c) PA measurement with IQ
mismatch added to the test signal x[n]. (d) Same data as c), but deviation from EVMFSQ is shown.

Fig. 9 (a). At the highest level (around 30 dBm), the PA is
in saturation and the distortion leads to −15 dB of inband
error. At low levels, the PA behaves very linear, achieving
EVMs down to −53 dB. In essence, the results of all methods
agree over the whole power range. To see differences in more
detail, the deviation from EVMFSQ is plotted in Fig. 9 (b).
EPRTD and EVMTD have an absolute difference less than
0.35 dB over the whole test range. Since the EPR obtained via
swept-tuned (ST) RF power measurements allows for a lower
measurement floor, the deviation defined EPRST,deviation =
EPRST−EVMFSQ is negative for low PA output powers. In
Fig. 9 (c), we present results of the same PA power sweep
as in (a) but with IQ mismatch added to the test signal
x[n]. With symmetric stopbands, the EPR does not capture
IQ mismatch. Therefore, EPRsymm in Fig. 9 (c) agrees with
the result without added IQ mismatch in subplot (a). With
asymmetric rejection bands, IQ mismatch is included and
hence EPRasymm resembles the EVM in Fig. 9 (c).

Table I presents inband error results of the RF chain pre-
sented in Sec. V-B, i.e., at low PA output power (2 dBm). The
values of EVMTD and EPRTD equal, which indicates that if
the measurement chain is the same, the EPR is able to estimate
the EVM very well. With the swept-tuned method EPRST a
lower noise-floor of −56.3 dB can be achieved. In the case
of added phase noise shown in Table II, EPRST resembles
EVMSIM and EVMFSQ,pilots closely. As expected, the EVM
result at the data tones is slightly (0.6 dB) worse. EVMTD and
EPRTD are slightly biased to higher values by the higher floor

TABLE I
RF CHAIN: MEASURED INBAND ERROR (DB)

EVMFSQ EPRST EVMTD EPRTD

-51.5 -56.3 -47.2 -47.2

TABLE II
PHASE NOISE: MEASURED INBAND ERROR (DB)

Method EVM EPR

FSQ/ST -38.4 -38.9
TD -38.1 -38.5
SIM -38.9 -39.0

FSQ,pilots -39.0

TABLE III
IQ MISMATCH: MEASURED INBAND ERROR (DB)

Method EVM EPRasymm EPRsymm

FSQ/ST -35.8 -35.9 -56.3
TD -35.8 -35.6 -46.8
SIM -35.8 -35.7 -88.6

of the TD RF signal path. The results in Table III confirm our
findings in Sec. IV regarding IQ mismatch. With asymmetric
stopbands, however, the EPR results resemble the EVM results
for IQ mismatch. Symmetric stopbands, however, lead to EPR
results resembling the case without added impairment.
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VI. DISCUSSION

A. Measurement Uncertainty

In the following, we discuss the uncertainty involved in EPR
measurements. Uncertainty is the doubt about the measure-
ment result [35], i.e., a measure of the variation to expect when
making repeated measurements affected by random errors.
Uncertainty analysis of EVM measurements is discussed in
[7], [36], and references [20-29] in [7]. We discuss systematic
errors and bias, i.e., the expected deviation from the true value,
separately in Sec. VI-B. We define three classes depending on
the source of uncertainty. These are

1) Randomness of the excitation signal.
2) Randomness of the DUT.
3) Randomness of the remaining measurement chain.

All three types of uncertainty can affect the repeatability of
the measurement. If we use a fixed test signal, which we do
in our measurements, there is no uncertainty of the first type.
However, there can be bias, as discussed in Sec. VI-B.

Uncertainty of the second type arises due to limited ob-
servation (time and bandwidth) of random DUT errors, e.g.,
thermal noise of a PA. The EPR has more type-2 uncertainty
than EVM, because the EPR observes the error only in a
fraction αBW = λ(M)

BW < 1 of the bandwidth BW used
for averaging the error in EVM. If there is only type-2
uncertainty, the variance of EPR is hence 1/αBW > 1 times
the variance of EVM, if the measurement duration is the same.
For deterministic error, e.g., a nonlinear DUT and negligible
type-1 and type-3 uncertainties, repeated measurements have
the same result, so both EPR and EVM have zero variance.

The type-3 uncertainties of EVMTD and EPRTD are the
same, because the measurement chain is the same. Although
we do not know the internals of the FSQ and the EVM
analyzer software, we expect the EVMFSQ to have similar
uncertainty as EVMTD. For EPRST, a different detector
(RMS instead of sample) is used and random errors in the RX
IQ path are excluded. Still, our experience is that the difference
in uncertainty of EPRST compared to EPRTD is small, in
practice. This is also supported by the informal experiment
described below. Apart from excluding synchronization errors
potentially biasing the result, the swept-tuned principle allows
for EPR measurements with lower measurement floor at high
bandwidths.

To get more insight for the amount of type-3 uncertainties
and the repeatability of our measurements, we made ten
successive trials of the power sweeps in Fig. 9 with fixed
excitation signals. The deviation from the mean (in dB) was
low for all methods, over the whole power range. For the EPR
methods the deviation was within ±0.17 dB over the whole
range. For EVM it was in the same range (±0.12 dB) apart for
an outlier deviating up to −0.32 dB for higher levels. At lower
levels, the uncertainty of the EPR measurements was slightly
higher compared to EVM. This is reasonable because at low
levels, the influence of additive noise is stronger and hence
we have type-2 uncertainty, leading to an increased variance
of EPR compared to EVM.

B. Bias and Stopband Selection

In the following, we discuss bias, i.e., the systematic
deviation of the EPR from the true EVM value. Since, in
general, the bias depends on the DUT, it is difficult to
remove. However, bias can often be avoided by setting up
the EPR measurement right. Below, we discuss both sides of
the following tradeoff. Using only few stopbands is beneficial
in order that the same error occurs in response to the EPR
test signal as in response to the EVM test signal. However,
for heavily-frequency-dependent error it is important that we
observe the error at many different frequency-locations, i.e.,
use many stopbands. Our experience is that using multiple
stopbands, each one subcarrier spacing broad, with an overall
stopband width of 3 to 10% of the original signal bandwidth is
a very good compromise, in practice (six stopbands at 40-MHz
WLAN correspond to about 5%). Choosing the width of each
stopband to be the OFDM subcarrier spacing is important to
avoid bias in case of phase noise. Placing the stopband-centers
at OFDM subcarrier-frequencies is convenient for comparison
with subcarrier-dependent EVM. Then, the individual EPRs
at each stopband resemble the EVMs at these subcarriers, i.e.,
EPR(km) ≈ EVM(km). For nonlinear DUTs this is, however,
only true if the EPR test signal statistics are sufficiently similar
to the EVM test signal statics. While for static nonlinearities
preserving the amplitude statistics (the PDF) is sufficient, for
nonlinearities with memory it can be important to also preserve
the correlation and higher order moments of the test signal.
However, retaining the PDF, e.g., a CSCN distribution, does
not mean that the EPR test signal has the same PSD as the
source signal (and consequently also not the same autocor-
relation). Quite the contrary, it cannot have the same PSD,
since we need a PSD with stopbands for EPR, whereas the
EVM test signal features no stopbands. The more bandwidth
we null for EPR, the less will the PSDs resemble, and the more
we are risking to produce a different amount of distortion at
the output compared to the EVM signal which may lead to a
biased EPR. However, we observed in many experiments with
measured and simulated systems, that this issue is not very
critical in practice when nulling, e.g., 10% of the bandwidth.
A related issue is that the test signal should not be too short in
order to excite the DUT in the same way as a standard EVM
test signal. We used 320 symbols according to the EVM test
WLAN standard, i.e., 1.28 ms.

Now we discuss the issue of observing the error adequately,
i.e., the observed error must be representative for the overall
error. When the frequency-dependence of the error is mild
(which is the case for most practical systems) the above
presented stop-band placement works well for estimating the
EVM. Then the exact number (between 3 or 8% of the number
of number of OFDM subcarriers) and absolute location of the
stopbands is also not critical. We proposed to use to use the
pilot locations as stopband-centers, because they are easy to
remember and the result can be directly compared to EVM
averaged at the pilots, which is provided by most commercial
EVM analyzers. Sometimes, the error increases or decreases
at the band-edges or around DC, so it can be useful to include
the outermost and innermost modulated subcarriers. Having a
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look on the individual EPR values is always advisable. If the
EPR varies a lot, it is sensible to make a second measurement
with different stopband locations. If the result differs from
the first one, it makes sense to make several measurements,
sweeping the stopband locations over the whole inband.

VII. CONCLUSION

We have presented an NPR measurement method with the
goal of estimating EVM. To discern our method from the
traditional approach with a single, broad notch in the center of
the spectrum, and to account for the fact that NPR is inversely
defined, we introduced the term error power ratio (EPR) for
our NPR-based EVM estimation method. EPR is an attractive
alternative to EVM because, in contrast to EVM, EPR does not
need high-accuracy demodulation and digitization of the whole
signal bandwidth. Rather, a standard swept-tuned spectrum
analyzer is all that is needed to make high accuracy, low-floor
measurements more or less independent of the bandwidth.

EPR can be a good estimate of EVM (with equalizer
and phase de-rotation employed) in case of additive noise,
nonlinearity, phase noise, and IQ mismatch. We have explained
this by analytical considerations illustrated with exemplary
simulation results, and verified by measurements. Besides esti-
mating EVM by using asymmetric stop-bands, EPR provides
the possibility to exclude IQ mismatch by using symmetric
stopbands. This can be handy when tracking the source of
limited EVM performance or when measuring EVM of DUTs
with very low EVM, without biasing the result with non-ideal
IQ-modulation and/or -demodulation.

We are convinced that the presented EPR method can be
a valuable tool for RF engineers in the lab when trying to
estimate the EVM performance of transceiver building blocks,
such as power amplifiers. Although we focused on WLAN
signals, our method should be readily applicable to other
OFDM-based communication standards. However, for signals
that are not circularly symmetric normal (CSCN), some further
work is necessary. Straightforward linear filtering changes the
statistics of a non-CSCN signal, in general. Hence, a key issue
when trying to estimate EVM for non-CSCN signals is how to
generate a signal retaining the communication signal statistics
but featuring the required stop-bands.
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APPENDIX A
OFDM AND EVM

A. Orthogonal Frequency Division Multiplexing (OFDM)

A baseband OFDM signal s(t) : R→ C can be written as

s̃(t) =
∑
l∈L

s̃l(t− lT ) , (27)

where T = Tw + Tg + TK is the symbol duration consisting
of guard Tg , window Tw and effective symbol time TK [21].
The symbol index set L is a connected set of integers. Unless

otherwise stated, we assume L = {0, . . . , NL − 1}. The lth
OFDM symbol is given as

s̃l(t) = w(t)
∑
k∈K

S[l, k]e
 2πkTK

t
, (28)

where w(t) is a window function with finite support −Tw −
Tg ≤ t ≤ TK +Tw fulfilling

∑
l∈Z w(t− lT ) = 1 [21]. S[l, k]

is a complex {data, pilot, null} symbol modulated on the kth
subcarrier of the lth OFDM symbol. The subcarriers (tones)
K indexed by k ∈ K = {−NK/2, . . . , NK/2− 1}, may
be divided into disjoint subsets for data carrying, pilot, and
unused (null) tones D, P , and U , respectively. The associated
cardinalities are ND, NP and NU , respectively, with NK =
ND+NP +NU . In the 40-MHz WLAN standard [1], we have
NK = 128, ND = 108, NP = 6, P = {±53,±25,±11},
U = {−64,±63,±62,±61,±60± 59,±1, 0}, NU = 14.

B. Error Vector Magnitude (EVM) Definition

The DUT output symbols are given as

Y [l, k] =
1

TK

∫ lT+TK

t=lT

ys(t)e
− 2πkTK

(t−lT )
dt , (29)

where ys(t) indicates that the DUT output y(t) must be
synchronized to s(t). For instance, a potential time-delay must
be compensated, e.g., with the method discussed in [37]. In
practice, an FFT is used to compute Y [l, k] from ys[n]. The
constellation symbol error is defined

E[l, k] = Yc[l, k]−X[l, k] , (30)

where Yc[l, k] is a corrected version of Y [l, k]. In data-aided
EVM analysis, the subcarrier modulation symbols X[l, k]
are the known, source symbols, i.e., X[l, k] = S[l, k]. The
required processing to obtain Yc[l, k] from Y [l, k] corresponds
to the signal enhancement facilities of a receiver: To remove
linear filtering effects, a frequency-dependent equalization
factor CEQ[k] ∈ C is introduced. Potential degradation due
to a common phase error (CPE) is combated using a symbol-
dependent phase de-rotation factor CCPE[l] ∈ C. With that, the
observed constellation symbol enhanced by equalization and
phase tracking is given as

Yc[l, k] = CEQ[k]CCPE[l]Y [l, k] . (31)

With data-aided analysis, i.e., the transmitted data symbols
X[l, k] are available in the analyzer and are used as a refer-
ence, the equalizer and de-rotation coefficients can be found
by minimizing the error in a least squares sense:

CEQ,opt[k] = argmin
CEQ[k]

∑
l∈L

|CEQ[k]Y [l, k] −X[l, k]|2

=

∑
l∈LX[l, k]Y ∗[l, k]∑
l∈L Y

∗[l, k]Y [l, k]
(32)

CCPE,opt[l] = argmin
CCPE[l]

∑
k∈S

|CCPE[l]Yc,EQ[l, k]−X[l, k]|2

=

∑
k∈S X[l, k]Y ∗c,EQ[l, k]∑

k∈S Y
∗
c,EQ[l, k]Yc,EQ[l, k]

(33)
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with Yc,EQ = CEQ[k]Y [l, k], meaning that equalization and
de-rotation is performed sequentially, in contrast to finding
the joint global optimum which would be much more involved.
Furthermore, we implicitly assume already compensated time-
delay and frequency offset, which allows for simple least-
squares optimization of the compensation parameters, whereas
the joint determination of optimal compensation parameter
values is a non-convex problem [6]. The mean constellation
power over a set of subcarriers C with cardinality |C| is denoted

PSC =
1

|C|
∑
k∈C

PS [k] , (34)

where the tone-dependent power PS [k] is obtained by averag-
ing over all symbols, i.e.,

PS [k] =
1

NL

∑
l∈L

|S[l, k]|2 . (35)

The error vector power (EVP) is defined as the mean error
power over all data tones D normalized by the respective
reference constellation power.

EVP =
PED

PXD

(36)

EVM =
√

EVP . (37)

If every constellation point occurs with the same probability,
PXD is an estimate of the average constellation power, which
is a constant for a given modulation format. In practice, for
Nl ≥ 100, PXD is more or less identical to the average
constellation power. In any case, we use the exact value of
PXD for computing the EVM. We see that EVP is defined
as a power ratio. The difficulties and flaws of EVM come
into play because for the error power PED , the demodulated
symbols Yc[l, k] are needed as can be seen from (30). Conse-
quently, accurate synchronization and equalization is required.
To inspect the distribution of the EVM over the subcarriers k,
we define

EVM[k] =
√
PE [k]/PXD . (38)

C. EVM for Additive Noise

Transforming the linear additive noise model in (9) to
Frequency domain yields

Y (ω) =H(ω)X(ω) + V (ω) . (39)

Assuming that the impulse respones h(t) has a discrete time
equivalent h[n] with finite support0 < n < Nh − 1, where
Nh ≤ Ng must be smaller than the effective OFDM guard
interval, the constellation symbol is given as (9)

Y [k, l] =H[k]X[k, l] + V [k, l] . (40)

where H[k] is the NK point DFT of h[n]. Inserting (40) in
(30) gives the error

E[k, l] = Y [k, l]CEQ[k]−X[k, l] (41)
= CEQ[k]H[k]X[k, l] + V [k, l]−X[k, l] (42)
= V [k, l] . (43)

To have (43) follow from (42), it is assumed that CEQ[k] =
1/H[k], i.e., the equalizer is able to correct the channel. Since
the error contains only the noise, the data-aided EVM in dB
equals -SNR averaged over the data bins, which is a well
known result [38].
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