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Abstract
In this paper, we apply kernel principal component anal-

ysis (kPCA), which has been successfully used for image de-
noising, to speech enhancement. In contrast to other enhance-
ment methods which are based on the magnitude spectrum, we
rather apply kPCA to complex spectral data. This is facilitated
by Gaussian kernels. In the experiments, we show good noise
reduction with few artifacts for noise corrupted speech at differ-
ent SNR levels using additive white Gaussian noise. We com-
pared kPCA with linear PCA and spectral subtraction and eval-
uated all algorithms with perceptually motivated quality mea-
sures.
Index Terms: Kernel PCA, speech enhancement

1. Introduction
Speech enhancement has many applications such as speech
communications and speech recognition. Algorithms for speech
enhancement can be divided into three main classes: Spectral-
subtractive algorithms, statistical-model-based algorithms and
subspace algorithms [1].

Subspace methods – which we consider in this work – are
based on the assumption that a speech signal only lives in a sub-
space of a given signal space. Noise on the other hand is dis-
tributed over the entire space. Noise reduction can therefore be
achieved by restricting the enhanced signal only to the speech
subspace and setting other signal components to zero. This is
usually realized by Principal Component Analysis (PCA) which
performs an eigenvalue decomposition (EVD) on the estimated
covariance matrices of the clean speech and the noise signal. In
addition, the speech signal is filtered to reduce noisy compo-
nents in the subspace of speech.

Speech enhancement is always a tradeoff between the sup-
pression of noise and the introduction of speech distortion
caused by the algorithm. Many speech enhancement algorithms
like, e.g., spectral subtraction suffer from musical noise. Fur-
thermore, these algorithms work on the magnitude spectrum
only. The phase of the original noisy signal is used for the fi-
nal transformation to time domain. Although a minor problem
compared to the occurrence of musical noise, this can reduce
the speech quality at low signal to noise ratios [1].

In this paper, we directly perform de-noising on the com-
plex coefficients of the short time Fourier transform (STFT) us-
ing kernel PCA (kPCA). Hence, we do not have to rely on the
phase of the noisy signal when transforming back to time do-
main. Kernel PCA is a non-linear extension of linear PCA. It
performs a mapping to a high-dimensional feature space and
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then applies PCA on the covariance matrix of the mapped data.
The covariance matrix, however, is not computed explicitly. In-
stead the EVD is performed on the kernel matrix. Among other
applications, kPCA has been successfully applied to image de-
noising [2, 3]. In speech processing, Takiguchi and Akiri used
kPCA to extract robust features from reverberant speech [4]. In
the experiments our approach shows a good performance for
additive white Gaussian noise at 5 and 10 dB SNR compared
to Hu and Loizou’s subspace method [5] and spectral subtrac-
tion [6]. Both algorithms introduce musical noise whereas our
approach generates a buzz-like artifact.

The paper is organized as follows: Section 2 introduces ker-
nel PCA and the reconstruction of samples in input space. The
implementation of the algorithm is explained in section 3. Ex-
periments and results are presented in Section 4. Section 5 con-
cludes the paper and gives a perspective on future work.

2. From linear PCA to Kernel PCA
Linear PCA is an orthogonal transformation of the space con-
taining the data samples of the problem at hand. The trans-
formed space is spanned by the eigenvectors that are found by
eigenvalue decomposition of the covariance matrix estimated
from the data samples. The coordinates of the data samples af-
ter transformation are referred to as principal components. Of-
ten few principal components capture most of the characteris-
tics of the data. The directions of these components are given by
the eigenvectors corresponding to large eigenvalues, as a large
eigenvalue means that its eigenvector covers relevant informa-
tion of the data. Several applications such as data compres-
sion and de-noising exploit this fact. For de-noising, directions
with small eigenvalues are assumed to contain no information
about the signal but only noise. These directions are dropped by
projecting the signal onto eigenvectors corresponding to large
eigenvalues.

Kernel PCA performs a non-linear transformation of the
sample x in input space, x ∈ RN , to the probably high-
dimensional feature space F expressed by the map

Φ : RN → F

x 7→ X. (1)

PCA is then performed in this highdimensional space. The co-
variance matrix in feature space can be expressed as

C̄ =
1

M

MX
j=1

Φ(xj)Φ(xj)T, (2)

where Φ(xj) are the samples mapped into feature space and M



denotes the number of samples.1 To perform PCA, we have to
solve the eigenvalue problem

λV = C̄V. (3)

All eigenvectors Vk that solve this equation must lie in the span
of the Φ-images. Therefore we can solve the equivalent system

λΦ(xk)T V = Φ(xk)T C̄ V for all k = 1, . . . ,M. (4)

Furthermore, each eigenvector V can be expanded as linear
combination of the Φ’s using the coefficients α1, . . . , αM

V =

MX
i=1

αiΦ(xi). (5)

Substituting Eq. (2) and Eq. (5) into Eq. (4) leads to

λ

MX
i=1

αiΦ(xk)TΦ(xi) =

1

M

MX
i=1

αiΦ(xk)T
MX

j=1

Φ(xj)Φ(xj)TΦ(xi) (6)

for all k = 1, . . . ,M.

The multiplication of Φ-images can be expressed as kernel in
terms of input samples k(xi,xj) = Φ(xi)

T ·Φ(xj). Defining
a kernel matrix K with entries

Kij = k(xi,xj) (7)

Eq. (7) can be reformulated as

MλKα = K2α, (8)

where α is a column vector with the entries α1, . . . , αM . This
system is equivalent to

Mλα = Kα, (9)

which is another eigenvalue problem. It is solved by the eigen-
vectors αk that equally solve Eq. (8). Requiring Vk to be nor-
malized leads to the normalization condition λk(αk)Tαk = 1.

For de-noising a test sample Φ(x), it is projected onto the
eigenvectors Vk, k = 1 . . . n, that correspond to the n largest
eigenvalues. The projection can be expressed in terms of kernel
functions using Eq. (5)

βk = (Vk)TΦ(x) =

MX
i=1

αk
i k(x,xi). (10)

Consequently, the projected sample in feature space equals

PnΦ(x) =
nX

k=1

βkVk, (11)

where Pn denotes the projection operator. For de-noising, how-
ever, the de-noised sample z in input space and not the de-
noised sample PnΦ(x) in feature space is needed. As the map-
ping from input to feature space is non-linear, it is not guaran-
teed that such a sample in input space exists, and if it does it is
not necessarily unique. So we try to find a sample z that satis-
fies Φ(z) = PnΦ(x). If the kernel is an invertible function z

1For the moment we assume that the data is centered, more details
follow at the end of this section.

Figure 1: Spectral detail of the clean utterance /t a sh e/. Left
hand side: Extraction of frequency bands with hopsize 2. Right
hand side: Extraction of 12 × 12 patches with hopsize 6.

can be computed directly as derived in [7]. For non-invertible
kernel functions like the Gaussian kernel

k(xi,xj) = exp(−‖xi − xj‖2/c), (12)

where c denotes the variance, z can be approximated by mini-
mizing

ρ(z) = ‖Φ(z)−PnΦ(x)‖2. (13)

This leads to an iterative update equation for z

zt+1 =

PM
i=1 γik(zt,xi)xiPM

i=1 γik(zt,xi)
, (14)

where γi =
Pn

k=1 βkα
k
i (see also [2]). Note that the resulting

pre-image z is always a linear combination of the input data
xi. The algorithm is sensitive to initialization, however this
can be tackled by reinitializing with different values. In our
experiments, we used the noisy data sample which results in
robust performance.

Until so far we have assumed that the data in feature space
is centered, i.e.,

PM
i=1 Φ(xi) = 0. Generally this assumption

does not hold and centering has to be done explicitly. Instead
of centering the mapped data samples Φ(xi) which are usually
not computed, centering can be done by modifying the kernel
matrix K to get the centered kernel matrix

K̃ = K− 1MK−K1M + 1MK1M , (15)

where 1M is a matrix with all entries equaling 1/M (for more
details see [8]). All following PCA steps can be conducted on
the centered kernel matrix.

For reconstruction the centering procedure has to be in-
verted. According to [9] this can be done by using γ̃i =
γi + 1/N(1−

PM
j=1 γk) in the reconstruction equation (14).

3. Implementation
Initially we applied kPCA on the magnitude of the STFT over
the whole test utterance. Like other speech enhancement meth-
ods we used the phase of the noisy signal for final transforma-
tion into time domain. In these experiments the phase again
corrupted the enhanced signal. This can be explained by the
fact that if two signals are additive in the domain of the com-
plex STFT their magnitudes are usually not [10]. Therefore, we
perform kPCA on the complex values of the STFT instead of
the magnitude. This avoids the usage of the phase of the noisy



Freq. band height in patches Frequency hop in patches
4 1
8 2

16 4
Patch size in bins Hop size in bins

12 × 12 1
16 × 16 2

Table 1: Parameters for frequency band and patch extraction.

signal. kPCA of complex data can easily be realized by using
the Gaussian kernel as it returns a real value.

To extract feature vectors from the sequence of STFTs we
apply the following procedure: First, the STFT is computed
from frames of 256 samples with 50% overlap. The resulting
time-frequency respresentation is split into shorter segments of
0.25 seconds to avoid large kernel matrices, as large kernel ma-
trices increase computation times. Experiments showed that the
application of kPCA on the full frequency range results in a
suppression of high frequencies. This can be explained by the
lower energy of speech in high frequencies. To compensate for
different energy levels, each time segment is processed in over-
lapping frequency bands as shown in Fig. 1 (left side). On
each frequency band kPCA is computed separately, i.e., for each
band we build an individual kernel matrix2. To retrieve sam-
ple vectors for kernel matrix computation each frequency band
is divided into overlapping patches of size 12 × 12 (see Fig.
1, right side). The height of one frequency band is 8 patches,
the band overlap is 4. In initial experiments we observed that
better de-noising is achieved when the patches are windowed.
Hence, a 2D Hamming window is applied and the patches are
rearranged as vectors to obtain samples for kPCA.

For resynthesis, patches, frequency bands and time seg-
ments have to be merged properly. Patches at the same time-
frequency position but of different frequency bands are aver-
aged. Then the patches are added in an overlapping manner
and weighted to compensate for windowing. For weighting the
standard method described in [11] is adapted to the 2D domain.
The time segments are merged, resulting in the full sequence of
STFT coefficients. Then inverse Fourier transform is applied to
the spectrum of each time instant and the signal is synthesized
using the weighted overlap add method of [11].

4. Experiments
We tested the algorithm on recordings of six speakers (three
male, three female). Each speaker uttered 20 sentences which
leads to 120 sentences in total. Recordings were performed
with a close-talk microphone and 16 kHz sampling frequency.
White Gaussian noise was added to the recordings at 15, 10 and
5 dB SNR. The algorithm was tested at 10 dB SNR with sev-
eral configurations for the time segmentation, the dimension of
frequency bands, the overlap of the frequency bands, the patch
size, the patch overlap, and the variance of the Gaussian kernel.
The tested values are listed in Table 1. The best configuration
of parameters was determined by listening to the files of two
speakers (one female and one male). The performance for dif-
ferent SNR levels depends on the variance of the Gaussian ker-
nel, therefore it was adapted for each condition. The values are
0.5, 1 and 2 for 15, 10 and 5 dB SNR, respectively.

2As the bands are overlapping, the kernel matrices partially have the
same entries - this is exploited in our implementation.

Figure 2: Spectral details of a speech utterance corrupted by
white noise at 10 dB SNR (left), its spectrogram after enhance-
ment by kPCA (middle) and Hu and Loizou’s algorithm (right).

The resulting files were evaluated perceptually and ob-
jectively by quality measures. For comparison we applied
subspace filtering as proposed by Hu and Loizou in [5]
and spectral subtraction as described in [6]. Audio exam-
ples are provided on http://www2.spsc.tugraz.at/
people/chrisl/audio/ for all algorithms. Fig. 2 shows
spectrogram details of one utterance: on the left corrupted by
noise, in the middle enhanced by kPCA, and on the right en-
hanced by Hu and Loizou’s algorithm.

For perceptual evaluation, we listened to files of two speak-
ers. Noise reduction works well for all three conditions. No
musical noise occurs, only a buzz-like artifact is perceivable.
This can be caused by windowing and requires further investi-
gation. At 5 dB SNR, some residual noise in the low frequency
range can be perceived. This can be explained by the fact that
the reconstructed samples of Eq. (14) are linear combinations
of the noisy input samples.

The reconstruction from noisy samples can be avoided by
a supervised procedure where analysis and de-noising are ap-
plied to different data sets. In such a procedure clean speech
is used for EVD. For de-noising, the noisy speech samples are
projected onto the eigenvectors of clean speech. Furthermore,
the clean samples are used for reconstruction and less noise is
introduced in the resulting signal.

For objective evaluation we used the following quality mea-
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Figure 3: Comparison between kPCA, Hu and Loizou’s algo-
rithm, and spectral subtraction using the frequency-weighted
SNR (fwsegSNR), the log-likelihood ratio (LLR), and the
Itakura-Saito distance (IS) for different SNR values.
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Figure 4: Evaluation of kPCA, Hu and Loizou’s algorithm,
and spectral subtraction by the perceptual speech quality
(PESQ) measure and a variant of the frequency-weighted SNR
(fwsegSNRvar) [1]. Both return a Mean Opinion Score (MOS),
where a higher value means a higher quality. The fwsegSNRvar
separately evaluates the quality of the speech signal (SIG), the
background intrusion (BAK), and the overall quality (OVL).

sures: the perceptual evaluation of speech quality (PESQ) mea-
sure, the log-likelihood ratio (LLR), frequency-weighted seg-
mental SNR (fwsegSNR), the Itakura-Saito (IS) distance, and a
variant of the frequency-weighted segmental SNR (fwsegSNR-
var) proposed in [1]. The PESQ returns values on the Mean
Opinion Score (MOS) scale. The fwsegSNRvar returns three
MOS values, where one only evaluates the signal quality (SIG),
one the background intrusion (BAK) and one the overall quality
(OVL). This evaluation is derived from the ITU-T [12] recom-
mendation for subjective listening tests. By judging the speech
and noise quality independently, better statements about the ef-
fects of the enhancement algorithm can be made. In [13], Hu
and Loizou investigated the correlation between several objec-
tive quality measures and the results of subjective listening tests.
In their experiments, PESQ, LLR and fwsegSNR showed high-
est correlations with the results of listening tests. The results
for fwsegSNR, LLR and IS are shown in Fig. 3, the results for
PESQ and fwsegSNRvar in Fig. 4.

The results for fwsegSNR and LLR are similar for all three
approaches. The IS is largest for spectral subtraction and small-
est for kPCA. In terms of PESQ Hu and Loizou’s approach is
best. The performance of kPCA measured by the fwsegSNR-
var is better than or equal to the performance of the other ap-
proaches for 5 dB and 10 dB SNR. For 15 dB it is weaker, how-
ever this cannot be confirmed by subjective evaluation.

Objective evaluation measures model the outcome of a lis-
tening test not perfectly, as they do not fully correlate. There-
fore, we plan to perform subjective listening tests according to

the ITU-T P.835 recommendation in the future.

5. Conclusion and Future Work
We showed that kernel PCA can be applied to the complex time-
frequency representation of speech utterances to perform unsu-
pervised de-noising. Complex data can easily be handled by
kPCA using a Gaussian kernel. As we do work directly in the
complex domain, we do not need to rely on the noisy phase for
back transformation into time domain.

The method works well for additive white Gaussian noise at
SNR levels of 15, 10 and 5 dB. For a proper choice of the vari-
ance of the Gaussian kernel only minor artifacts are perceivable
and no musical noise occurs.

In terms of objective quality measures we achieve a similar
performance like linear PCA and spectral subtraction for 10 and
5 dB SNR. However, objective evaluation measures cannot fully
predict the outcome of subjective listening tests. Therefore, we
plan to evaluate the algorithm by an MOS test. In addition, we
want to perform experiments on other speech databases includ-
ing different noise types like, e.g., babble noise.
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