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ABSTRACT

In this paper, we propose a method for musical noise suppression in

enhanced speech recordings. This method uses the number of iter-

ations needed to compute the so-called pre-images for patches from

complex-valued spectral data of the noisy signal. From the num-

ber of iterations a continuous mask can be derived which discrim-

inates between speech and non-speech regions. This mask is ap-

plied to suppress musical noise that is most disturbing in non-speech

regions. Compared to the original enhanced recording the perfor-

mance in terms of objective quality measures slightly decreases, but

the subjectively perceived quality is better, as the musical noise can

be significantly reduced.

Index Terms— Speech enhancement, musical noise suppres-

sion, pre-image problem

1. INTRODUCTION

In speech enhancement, the occurrence of musical noise is a major

problem. Musical noise originates from inaccuracies of the enhance-

ment algorithm at hand and is a random amplification of frequency

bins that change quickly over time. This is perceived as “twittering”

and degrades the perceptual quality massively. If it is too prominent,

it may even be more disturbing than the interference before speech

enhancement. Figure 1 shows an example for a speech recording

with interfering white Gaussian noise at 10dB SNR that has been

enhanced by the generalized subspace method [1]. The “blobs” in

the spectrogram are perceived as musical noise.

Much research has been carried out on how to combat musi-

cal noise, either by modifying the enhancement method at hand or

by postprocessing. The postprocessing method in [3] for spectral

subtraction is based on musical noise/speech classification from the

spectrum and subsequent processing of the spectral values. In [2],

post-filtering with a perceptually inspired filter is applied to the out-

come of the used subspace method. The method proposed in [4] can

be applied as postprocessing for any speech enhancement method, it

performs smoothing of weighting gains using a robust detector for

speech pauses and low SNR conditions.

Recently, we presented a new method for speech enhancement

that applies kernel principal component analysis (kPCA) on com-

plex spectral data [5]. Kernel PCA is equivalent to principal com-

ponent analysis (PCA) after a non-linear transformation to a high-

dimensional feature space. The transformation to the feature space

is performed implicitly via the computation of the kernel matrix. The

inverse transformation, however, has to be computed explicitly. Due
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Fig. 1. Spectrogram of the phrase “Britta schenkt fünf grüne Ringe.”

uttered by a female speaker, corrupted by additive white Gaussian

noise at 10dB SNR and enhanced using the generalized subspace

method [1]. Note that the “blobs” in the non-speech regions are

perceived as musical noise.

to the non-linear mapping, the inverse transformation is not unique

[6]. Several solutions have been proposed to solve this so-called

“pre-image problem” [6, 7, 8, 9].

In [10], we reported that the used pre-image method can cru-

cially influence the performance of the speech de-noising process.

Furthermore, in [11] we observed that the influence of the kernel

PCA projection is negligible compared to the computation of the

pre-image. During further investigation of the iterative estimation of

pre-images in the spectral domain, we discovered a strong correla-

tion between the number of iterations needed and the properties of

the underlying signal. To be more precise, we observed that the num-

ber of pre-image iterations is an indicator for the presence of speech

in the noisy signal. In this paper, we describe a method that uses

the number of iterations for musical noise suppression in enhanced

speech recordings by deriving a continuous mask. The mask is ap-

plied on the magnitude of the enhanced signal and suppresses mu-

sical noise in non-speech regions. Listening to the resulting speech

recordings confirms the better speech quality while objective quality

measures slightly decrease due to inaccuracies of the mask.

The paper is organized as follows: Section 2 explains the moti-

vation for the proposed method and describes the realization. Sec-

tion 3 presents the experiments, the evaluation, and the results. Sec-

tion 4 concludes the paper and gives an outlook on future work.

2. PRE-IMAGE ITERATIONS FOR SPEECH

ENHANCEMENT AND MUSICAL NOISE SUPPRESSION

Mika et al. [6] proposed an iterative method to compute the pre-

image of samples processed by kernel PCA. In [11], we observed

that the weights of the kernel PCA only have a minor effect on the

outcome. Neglecting these weights, the update equation simplifies



as follows

zt+1 =

PM

i=1
k(zt,xi)xi

PM

i=1
k(zt,xi)

, (1)

where zt denotes the pre-image or enhanced sample at iteration step

t, xi is the ith noisy sample, M is the number of noisy samples, and

k(·, ·) represents the kernel function. We use the Gaussian kernel

k(xi,xj) = exp(−‖xi − xj‖
2/c), (2)

where c is its variance. This kernel serves as similarity measure

between the samples.

The method of Mika et al. can be refined by regularization as

proposed by Abrahamsen and Hansen in [8]. Applying the obser-

vations from above, the corresponding simplified iterative equation

is

zt+1 =
2

c

PM

i=1
k(zt,xi)xi + λx0

2

c

PM

i=1
k(zt,xi) + λ

(3)

where x0 is the noisy sample for which the pre-image is computed

and λ is the regularization parameter.

The equations (1) and (3) are iterated until convergence of zt+1.

The sample vectors for the pre-image iteration are quadratic patches

in column-major order which are extracted from the time-frequency

representation after application of the short term Fourier transform

(for details see section 3).

2.1. Convergence behaviour

During analysis of the pre-image iterations, we observed a correla-

tion between the convergence rate and the properties of the time-

frequency representation of the signal. More precisely, if a patch is

extracted from a region with speech only, the number of iterations

is very low. If the patch stems from a region with noise only, the

number of iterations is higher. Furthermore, if the patch is from a

boundary region containing speech and noise at equal amount, the

required number of iterations is even higher. Figure 2 (a) shows the

spectrogram of a speech utterance by a female speaker corrupted by

additive white Gaussian noise at 10 dB SNR, Figure 2 (b) shows the

clean recording, and Figure 3 (a) and (b) show the number of iter-

(a)

(b)

Fig. 2. (a) Noisy recording of the phrase visualized in Figure 1,

corrupted by additive white Gaussian noise at 10dB SNR. (b) Corre-

sponding clean recording.
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Fig. 3. (a) Iteration numbers computed with maximally 6 iterations.

(b) Iteration numbers computed with maximally 20 iterations.

ations computed from the noisy recording, limited to maximally 6

and 20, respectively.

This observation makes the number of iterations a useful indi-

cator to discriminate between speech and non-speech regions and

naturally leads to a continuous mask for time-frequency represen-

tations. Musical noise in enhanced speech recordings is most dis-

turbing in non-speech regions, so we apply this mask to attenuate

musical noise.

2.2. Musical noise reduction

If the number of iterations for the patches of a speech utterance are

computed, speech and non-speech regions can be easily separated

by setting a threshold. Instead of using a binary mask, a continuous
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Fig. 4. Sigmoid mapping function from the number of iterations t to

the weight of the mask m. The parameters are set to a = 1.2 and

b = 9. The function is used for maximally 6 iterations (see operating

region).



mask that allows smooth transitions between speech and non-speech

regions is preferred, as it reduces potential artifacts from inaccura-

cies of the mask estimation. We compute the mask m by applying

the sigmoid function

m =
1

1 + exp(t ∗ a + b)
(4)

to the number of iterations t, where a and b are scaling parame-

ters. Figure 4 shows the mapping function with the parameters set

to a = 1.2 and b = 9, Figure 5 (a) shows the resulting mask. To

perform musical noise suppression, the mask is multiplied with the

magnitude of the STFT in the logarithmic domain. Figure 5 (b) illus-

trates the result for the recording plotted in Figure 1. Musical noise

is still visible in the spectrogram, however its amplitude is decreased.
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Fig. 5. (a) Mask computed with the sigmoid function from (4) with

a = 1.2 and b = 9 and maximally 6 iterations. (b) Resulting speech

utterance from Figure 1 with suppressed musical noise after applica-

tion of the mask.

3. EXPERIMENTS

As in previous applications [5], the sample vectors for the pre-image

iteration are computed with the following procedure: First, the short

term Fourier transform is computed with a frame length of 256 sam-

ples, an overlap of 50% and the application of a Hamming window.

The resulting time-frequency representation is split along time and

frequency axis to reduce computational costs. From the retrieved fre-

quency bands, quadratic patches of size 12 × 12 are extracted with

overlap 11. The frequency range covered by the frequency bands is

specified to be 8 patches with an overlap of 4 patches between adja-

cent bands. The time range of the bands is 20 patches with an overlap

of 10 patches. In previous work, windowing of the patches was ben-

eficial, so a 2D Hamming window is applied before rearranging the

patches to vectors in column-major order. The pre-image iteration is

applied on each frequency band independently, i.e., to the M noisy

samples that belong to the current frequency band.

Due to the overlap of the bands, patches at a certain time fre-

quency position belong to different frequency bands at the same

time. Consequently, more than one count of iterations is retrieved

per patch. Further, we are primarily interested in the number of iter-

ations for each bin and not each patch. Hence, some more processing
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Fig. 6. Perceptual evaluation of speech quality (PESQ) measure for

the original subspace method [1] (Subspace), the proposed musi-

cal noise suppression applied with two different parameter settings

(Subspace mask 1.0 with a = 1.1 and b = 9 and Subspace mask

1.1 with a = 1.2 and b = 9), the mask applied on the noisy signal

(Noisy mask), and the pre-image iteration method from [11] (Pre-

image).

has to be done to retrieve a valid mask for musical noise reduction:

First, each iteration value is expanded to the size of patches (12×12).

Then the patches of iteration numbers corresponding to the same

time-frequency position are averaged. Application of function (4)

on this iteration map leads to the mask as visualized in Figure 5 (a).

The method was tested on a database with recordings of 6 speak-

ers, 3 male and 3 female. Each of the speakers read a list of 20

sentences. The recordings were performed with a close-talk micro-

phone and 16 kHz sampling frequency. White Gaussian noise was

added at 2.5, 5, 10, and 15 dB SNR. Evaluation was done by listen-

ing, by visual inspection of the spectrogram and by computation of

objective quality measures.

Listening to the files confirmed that musical noise can be re-

duced with a proper parameter choice without significantly affecting

the speech components.1 The spectrograms confirm this result – one

example is shown in 5 (b). If the parameters of the sigmoid mapping

function (4) are selected to lead to stronger attenuation, also speech

components, mainly fricatives, are affected. This can be explained

by the similar properties of noise and the fricatives. Strong atten-

uation results in a low pass effect, so it was avoided to prevent a

degradation of the signal quality.

In addition to the subjective evaluation, the enhanced record-

ings were evaluated using objective quality measures that have

been reported to have a high correlation to subjective listening tests

[12]. Figure 6 and 7 show the perceptual evaluation of speech qual-

ity (PESQ) measure and the frequency-weighted segmental SNR

(fwsegSNR) for the musical noise suppression with two parameter

settings compared to the original subspace method [1], the method

using pre-image iterations as described in [11], and the mask di-

rectly applied on the noisy signal. The PESQ measure shows a

minor decrease of performance if the musical noise suppression is

1Audio examples can be found on http://www2.spsc.
tugraz.at/people/chrisl/audio/
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Fig. 7. Frequency-weighted segmental SNR for the original sub-

space method (Subspace), the proposed musical noise suppression

with two parameter settings (Subspace mask 1.0 with a = 1.0 and

b = 9 and Subspace mask 1.1 with a = 1.1 and b = 9), the mask ap-

plied on the noisy signal (Noisy mask), and the pre-image iteration

method (Pre-image).

applied, but the performance is better than for the pre-image itera-

tion approach and the application of the mask on the noisy signal.

The frequency-weighted SNR of all methods lies in the same range,

here the pre-image iteration approach and the approach using only

the mask achieve similar performance as the subspace methods with

and without musical noise suppression. It is important to note that

although the performance measures with musical noise suppression

are slightly weaker, the subjective audio quality is higher since there

is less disturbing musical noise. The performance measures do not

seem to put emphasis on the musical noise, however they rely on

changes in the spectrum which might be affected by the applica-

tion of the mask. Hence subjective listening tests are necessary to

reliably evaluate the results.

4. CONCLUSION AND FUTURE WORK

In this paper, we incorporate the knowledge gained from pre-image

iterations to suppress musical noise in enhanced speech recordings.

If the iterative pre-image method is applied on complex-valued spec-

tral data, the number of iterations until convergence shows a correla-

tion to the properties of the underlying signal and enables a discrim-

ination between speech and non-speech regions. This information is

used to create a mask that can be applied on the magnitude of the

enhanced signal to suppress the musical noise.

The method was applied on speech recordings corrupted by

additive white Gaussian noise at different SNRs which have been

enhanced using the generalized subspace method. The empirical

comparison of the recordings with suppressed musical noise to the

recordings from the subspace method shows a minor decrease in

terms of objective quality measures. This can be explained due to

attenuations of the speech spectrum caused by inaccuracies of the

mask. The subjective quality, however, is better as less musical noise

can be perceived.

In future, we plan to optimize the computation of the mask by,

e.g., adopting image processing techniques to expand the mask in

order to reduce suppression of speech components. Furthermore,

we want to extend the experiments to more general scenarios with

different noise types such as babble noise. Finally, we plan to do

a subjective listening test, as objective quality measures do not al-

ways fully reflect the perceived audio quality, as is the case for the

presence of musical noise.
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