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Abstract —We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient
(CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints of the parameters of
the Bayesian network during optimization, i.e. the probabilistic interpretation of the model is not lost. This enables to handle missing
features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum
margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning
significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on
all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification
performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex
relaxation [1]. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude
faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines
(SVMs) using a fewer number of parameters. Moreover, we show that unanticipated missing feature values during classification can
be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require
mechanisms to complete unknown feature values in the data first.

Index Terms —Bayesian network classifier, discriminative learning, discriminative classifiers, large margin training, missing features,
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1 INTRODUCTION

In statistical learning theory, the PAC bound on the
expected risk for unseen data depends on the empirical
risk on the training data and a measure for the general-
ization ability of the empirical model which is directly
related to the Vapnik-Chervonenkis (VC) dimension [2].
One of the most successful discriminative classifiers,
namely the support vector machine (SVM), finds a de-
cision boundary which maximizes the margin between
samples of distinct classes resulting in good general-
ization properties of the classifier. In contrast, conven-
tional discriminative training methods that rely on the
conditional likelihood (CL) optimize only the empirical
risk, which is suboptimal. Taskar et al. [3] observed that
undirected graphical models can be efficiently trained
to maximize the margin. More recently, Guo et al. [1]
introduced the maximization of the margin to Bayesian
networks using convex optimization. Unlike in undi-
rected graphical models, the main difficulty for Bayesian
networks is maintaining the normalization constraints
of the local conditional probabilities during parameter
learning. In [1], these constraints are relaxed to obtain a
convex optimization problem. However, conditions on
the graph structure are given, ensuring that the class
posterior of the relaxed problem is unchanged in case
of re-normalization [4], [5]. Unfortunately, classification
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results for this algorithm have only been demonstrated
on small-scale experiments. Since then, different margin-
based training algorithms have been proposed for hid-
den Markov models in [6], [7] and references therein.
Compared to [1], we maximize the margin in Bayesian

network classifiers using a different approach. We keep
the sum-to-one constraints which maintain the proba-
bilistic interpretation of the network. This has the par-
ticular advantage that summing over missing variables
is still possible (as we show in this paper). However,
we no longer have a convex optimization problem.
Convex problems are desirable in many cases as any
local optimum is a global optimum. Collobert et al. [8]
show that the optimization of non-convex loss functions
in SVMs can lead to sparse solutions (lower number of
support vectors) and accelerated training performance.
They conclude that the sacrosanct popularity of convex
approaches should not pre-empt the exploration of al-
ternative techniques, since they may offer computational
advantages. Similar observations are reported in [7] and
in this article.
In this paper, we introduce maximum margin (MM)

parameter learning for Bayesian network classifiers us-
ing a conjugate gradient (CG) method [9]. We treat two
cases of discriminative parameter learning: both opti-
mization criteria (CL or MM) are optimized using a CG
algorithm. CG-based CL learning for Bayesian networks
has been introduced in [10]. Recently, we proposed to
use the extended Baum-Welch (EBW) algorithm [11] for
optimizing the CL of Bayesian network classifiers [12].
In the speech community, the EBW algorithm is well-
known for optimizing the CL of hidden Markov mod-
els [11], [13]. EBW offers an EM-like parameter update.
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In fact, it is shown in [14] that the EBW algorithm resem-
bles the gradient descent algorithm for discriminatively
optimizing Gaussian mixtures using a particular step
size choice in the gradient descent method. In [15], we
attempted to use EBW for MM parameter optimization
of Bayesian network classifiers. We empirically observed
similar results as for CG-based optimization, however
the EBW requires a rational objective function which
can not be guaranteed anymore. Similarly, we introduced
maximum margin learning to Gaussian mixture models
using the EBW algorithm [16].
In experiments, we compare the classification perfor-

mance of generative maximum likelihood (ML) and dis-
criminative MM and CL parameter learning approaches.
We show that maximizing the margin dominates the con-
ditional likelihood approach with respect to classification
performance for most cases. Furthermore, we provide
results for maximum margin optimization using convex
relaxation [1]. We achieve highly similar classification
rates, whereas our CG-based margin optimization is
computationally dramatically less costly. All Bayesian
network classifiers use either naive Bayes (NB) or gener-
atively and discriminatively optimized1 tree augmented
naive Bayes (TAN) structures. We also provide results
for SVMs showing that margin-optimized Bayesian net-
work classifiers are serious competitors – especially in
cases where small-sized and probabilistic models are re-
quired. Moreover, we show experiments demonstrating
the ability of handling missing feature scenarios. We are
particularly interested in situations where unanticipated
missing feature values arise during classification, i.e.
during testing, which can be easily handled by our
discriminatively optimized Bayesian network classifiers.
Discriminative models usually require mechanisms to
first complete unknown feature values in the data –
known as data imputation – and then applying the stan-
dard classification approach to the completed data. We
provide results for two imputation techniques, namely
(i) mean value imputation, i.e. the missing feature value
is replaced with the mean value of the feature over the
entire training data set; (ii) k-nearest neighbor (kNN)
value imputation, i.e. the mean value (for discretized
data the most frequent value) of the k-nearest neighbors
is used as surrogate of the missing feature value. kNN
feature value imputation is slow and requires the train-
ing data to be available during classification.
The paper is organized as follows: In Section 2, we

introduce our notation and briefly review Bayesian net-
works, ML parameter learning as well as NB and TAN
structures. In Section 3, we introduce MM parameter
learning. Section 4 summarizes a generative and two
discriminative structure learning algorithms used in the
experiments. In Section 5, we present experimental re-
sults for phonetic classification using the TIMIT speech

1. By “discriminative structure learning”, we mean that the aim of
optimization is to learn the structure of the network by maximizing a
cost function that is suitable for reducing classification errors, such as
conditional likelihood or classification rate.

corpus [17], for handwritten digit recognition using the
MNIST [18] and USPS data sets, and for a remote sens-
ing application. Furthermore, experiments for missing
feature situations are reported in Section 5.1 and 5.2. In
Section 5.3, we show results for margin-based Bayesian
network parameter optimization using convex relaxation
and provide the runtime for each of the maximum
margin parameter learning algorithms. Finally, Section 6
concludes the paper.

2 BAYESIAN NETWORK CLASSIFIERS

A Bayesian network [19] B = 〈G,Θ〉 is a directed acyclic
graph G = (Z,E) consisting of a set of nodes Z and a
set of directed edges E connecting the nodes. This graph
represents factorization properties of the distribution of a
set of random variables Z = {Z1, . . . , ZN+1}, where |Zj |
denotes the cardinality of Zj . The variables in Z have val-
ues denoted by lower case letters z = {z1, z2, . . . , zN+1}.
We use boldface capital letters, e.g. Z, to denote a
set of random variables and correspondingly boldface
lower case letters, e.g. z, denote a set of instantiations
(values). Without loss of generality, in Bayesian network
classifiers the random variable Z1 represents the class
variable C ∈ {1, . . . , |C|}, where |C| is the number of
classes and X1:N = {X1, . . . ,XN} = {Z2, . . . , ZN+1}
denotes the set of random variables which model the
N attributes of the classifier. In a Bayesian network
each node is independent of its non-descendants given
its parents. Conditional independencies among variables
reduce the computational effort for exact inference on
such a graph. The set of parameters which quantify
the network is represented by Θ. Each node Zj is rep-
resented as a local conditional probability distribution
given its parents ZΠj

. We use θ
j

i|h to denote a specific
conditional probability table entry (assuming discrete
variables); the probability that variable Zj takes on its
ith value assignment given that its parents ZΠj

take their

hth (lexicographically ordered) assignment, i.e. θ
j

i|h =

PΘ

(
Zj = i|ZΠj

= h
)
. Hence, h contains the parent con-

figuration assuming that the first element of h denoted as
h1 is the conditioning class and the remaining elements
h\h1 are the conditioning parent attribute values. The
training data consists of M independent and identically

distributed samples S = {zm}Mm=1 = {(cm,xm
1:N )}M

m=1

where M = |S|. The joint probability distribution of a
sample z

m is determined as

PΘ (Z = z
m) =

N+1
Y

j=1

PΘ

“

Zj = z
m
j |ZΠj = z

m
Πj

”

=

N+1
Y

j=1

|Zj |
Y

i=1

Y

h

“

θ
j

i|h

”u
j,m

i|h
, (1)

where we use u
j,m

i|h to represent the mth sample in binary

form, i.e. u
j,m

i|h = 11n

zm
j

=i and zm
Πj

=h
o. Symbol 11{i=j} de-

notes the indicator function, i.e. it equals 1 if the Boolean
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expression i = j is true and 0 otherwise. The class labels
are predicted using the maximum a-posteriori (MAP)
estimate obtained by Bayes rule, i.e.

PΘ (C = c|X1:N = x
m
1:N ) =

PΘ (C = c,X1:N = x
m
1:N )

P|C|

c′=1 PΘ (C = c′,X1:N = xm
1:N )

,

where the most likely class c∗ is determined as c∗ =
arg maxc′∈{1,...,|C|} PΘ (C = c′|X1:N = x

m
1:N ).

For the sake of brevity, we only notate instantiations
of the random variables in the sequel.

2.1 Generative ML Parameter Learning

The log likelihood function of a fixed structure of B is

LL (B|S) =
M

X

m=1

N+1
X

j=1

|Zj |
X

i=1

X

h

u
j,m

i|h log
“

θ
j

i|h

”

.

Maximizing LL (B|S) leads to the ML estimate of the
parameters

θ
j

i|h =

PM

m=1 u
j,m

i|h
PM

m=1

P|Zj |

l=1 u
j,m

l|h

,

using Lagrange multipliers to constrain the parame-
ters to a valid normalized probability distribution, i.e.∑|Zj |

i=1 θ
j

i|h = 1.

2.2 Discriminative CL Parameter Learning

Maximizing CL is tightly connected to minimizing the
empirical risk. Unfortunately, CL does not decompose as
ML does. Consequently, there is no closed-form solution.
The conditional log likelihood (CLL) is

CLL (B|S) = log
M
Y

m=1

PΘ (cm|xm
1:N ) (2)

=
M

X

m=1

2

4log PΘ (cm
,x

m
1:N ) − log

|C|
X

c=1

PΘ (c,xm
1:N )

3

5 .

A conjugate gradient algorithm [10], [20] or the EBW
method [12] have been proposed for maximizing
CLL (B|S). For the sake of completeness, we shortly
sketch the CG algorithm for CL optimization in the
Appendix.

2.3 Structures

In this work, we restrict our experiments to NB and
TAN structures defined in the next paragraphs. The NB
network assumes that all the attributes are condition-
ally independent given the class label. This means that,
given C, any subset of X is independent of any other
disjoint subset of X. As reported in the literature [21],
[22], the performance of the NB classifier is surprisingly
good even if the conditional independence assumption
between attributes is unrealistic or even false in most

of the data. Reasons for the utility of the NB classifier
range between benefits from the bias/variance tradeoff
perspective [21] to structures that are inherently poor
from a generative perspective but good from a discrimi-
native perspective [23]. The structure of the naive Bayes
classifier represented as a Bayesian network is illustrated
in Figure 1(a).

(a)

C

X1 X2 X3 XN

(b)

C

X1 X2 X3 XN

Fig. 1. Bayesian Network: (a) NB, (b) TAN.

In order to overcome some of the limitations of the
NB classifier, Friedman et al. [21] introduced the TAN
classifier. A TAN is based on structural augmentations
of the NB network: Additional edges are added between
attributes. Each attribute may have at most one other
attribute as an additional parent which means that the
tree-width of the attribute induced sub-graph is unity2,
i.e. we have to learn a 1-tree over the attributes. The
maximum number of edges added to relax the indepen-
dence assumption between the attributes is N −1. Thus,
two attributes might not be conditionally independent
given the class label in a TAN. An example of a TAN
network is shown in Figure 1(b).
A TAN network is typically initialized as a NB net-

work and additional edges between attributes are de-
termined through structure learning. Hence, TAN struc-
tures are restricted such that the class node remains
parent-less, i.e. CΠ = ∅. An extension of the TAN
network is to use a k-tree, i.e. each attribute can have
a maximum of k attribute nodes as parents. In [20], we
noticed that 2-trees over the features do not improve
classification performance significantly without regular-
ization. Therefore, we limit the experiments to NB and
TAN structures. Many other network topologies have
been suggested in the past – a good overview is provided
in [26].

2. The tree-width of a graph is defined as the size (i.e. number
of variables) of the largest clique of the moralized and triangulated
directed graph minus one. Since there are commonly multiple trian-
gulated graphs, the tree-width is defined by the triangulation where
the largest clique has the fewest number of variables. More details are
given in [24], [25] and references therein.
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3 DISCRIMINATIVE MARGIN -BASED PARAME -
TER LEARNING

The proposed CG-based maximum margin learning al-
gorithm is developed in the following sections.

3.1 Maximum Margin Objective Function

The multi-class margin [1] of sample m can be expressed
as

d̃
m
Θ = min

c6=cm

PΘ (cm|xm
1:N )

PΘ (c|xm
1:N )

=
PΘ (cm,xm

1:N )

maxc6=cm PΘ (c,xm
1:N )

. (3)

Sample m is correctly classified if and only if d̃m
Θ > 1.

We replace the maximum operator by the differentiable

softmax function maxx f(x) ≈ log [
∑

x exp (ηf(x))]
1

η pa-
rameterized by η, where η ≥ 1 and f (x) is non-
negative [6]. In the limit of η → ∞ the approximation
approaches the maximum operator.3 Using this we can
define the approximate multi-class margin dm

Θ . Taking
the logarithm we obtain

log d
m
Θ = log PΘ (cm

,x
m
1:N ) −

1

η
log

X

c6=cm

(PΘ (c,xm
1:N ))η

. (4)

Usually, the maximum margin approach maximizes the
margin of the sample with the smallest margin for a
separable classification problem [27], i.e. the objective
is to maximize minm=1,...,M log dm

Θ . For a non-separable
problem, we aim to relax this by introducing a soft mar-
gin, i.e. we focus on samples with log dm

Θ close to zero.
For this purpose, we consider the hinge loss function

fM (B|S) =

M
X

m=1

min (1, λ log d
m
Θ ) ,

where the scaling parameter λ > 0 controls the margin
with respect to the loss function and is set by cross-
validation. Maximizing this function with respect to
the parameters Θ implicitly increases the log-margin,
whereas the emphasis is on samples with λ log dm

Θ < 1,
i.e. samples with a large positive margin have no impact

on the optimization. Maximizing M̃ (B|S) using CG is
not straight forward due to the non-differentiability in
the derivative at λ log dm

Θ = 1. Therefore, we propose to
use a smooth hinge function hκ(y) inspired by the Huber
loss [28] which is differentiable in R and has a similar
shape as min [1, y]:

hκ(y) =

8

>

<

>

:

y + κ, if y ≤ 1 − 2κ,

1 − (y−1)2

4κ
, if 1 − 2κ < y < 1, and

1, if y ≥ 1,

(5)

3. Empirical results showed that the performance of the algorithm is
not sensitive to the choice of η for η ≥ 5. The case η = 1 resembles the
classical softmax function which empirically showed a slightly inferior
performance.

where κ parameterizes this loss function. For κ→ 0 the
smooth hinge function approaches min (1, y). This func-
tion requires to divide the data S into three partitions
depending on ym = λ log dm

Θ , i.e. S1
Θ contains samples

where ym ≤ 1−2κ, S2
Θ consists of samples with a margin

in the range 1− 2κ < ym < 1, and S3
Θ = S \

{
S1

Θ ∪ S
2
Θ

}
.

The smooth hinge function hκ(y) parameterized by κ is
shown in Figure 2.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

h κ(y
)

 

 

hinge

smooth hinge (κ=0.5)
smooth hinge (κ=0.1)

quadratic

linear

Fig. 2. Differentiable approximation of the hinge loss for
κ = 0.5 and κ = 0.1.

Similar as in [29] we empirically identified typical
values of κ in the range between 0.01 and 0.5. Tuning
parameter κ in the given range has a moderate impact on
the performance (as we show in experiments). Hence, we
suggest to fix this parameter in case of time constraints.
Finally, using the introduced smooth hinge loss our

objective function for margin maximization is

M (B|S) =
X

m∈S1

Θ

(λ log d
m
Θ + κ)

+
X

m∈S2

Θ

»

1 −
(λ log dm

Θ − 1)2

4κ

–

+ |S3
Θ|. (6)

This function is differentiable and can be optimized by
CG methods.

3.2 CG Algorithm

We use a conjugate gradient algorithm with line-search
[30] which requires both the objective function (6) and
its derivative. In particular, the Polak-Ribiere method is
used [9]. The probability θ

j

i|h is constrained to θ
j

i|h ≥ 0

and
∑|Zj |

i=1 θ
j

i|h = 1. To incorporate these constraints in
the conjugate gradient algorithm we re-parameterize the
problem according to

θ
j

i|h =
exp

“

β
j

i|h

”

P|Zj |

l=1 exp
“

β
j

l|h

” ,
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where β
j

i|h ∈ R is unconstrained. The CG algorithm

requires the gradient ∂M(B|S)

∂β
j

i|h

which is obtained using

the chain rule as

∂M (B|S)

∂β
j

i|h

=

|Zj |
X

k=1

∂M (B|S)

∂θ
j

k|h

∂θ
j

k|h

∂β
j

i|h

. (7)

3.3 Derivatives

The derivative of ∂M(B|S)
∂Θ in Eq. (7) is

∂M (B|S)

∂θ
j

i|h

=
M

X

m=1

s
m,λ
Θ

∂ log dm
Θ

∂θ
j

i|h

,

where s
m,λ
Θ denotes a sample dependent weight given

by

s
m,λ
Θ =

8

>

<

>

:

λ, if m ∈ S1
Θ,

− λ
2κ

(λ log dm
Θ − 1) , if m ∈ S2

Θ, and

0, if m ∈ S3
Θ.

(8)

When determining the derivative log dm
Θ we have

to distinguish among two cases: For TAN and NB
structures each parameter θ

j

i|h involves the class node
value, either C = i for j = 1 or C = h1 for j > 1 where h1

denotes the class instantiation h1 ∈ h. Due to this fact, at
most one summand is nonzero when differentiating the
term

∑
c 6=cm (PΘ (c,xm

1:N ))
η in Eq. (4) with respect to θ

j

i|h.

Case A: For the class variable, i.e. j = 1 and h = ∅, the
derivative of Eq. (4) after introducing the joint probabil-
ity of Eq. (1) results in

∂ log dm
Θ

∂θ1
i

=
u

1,m
i

θ1
i

− 11{i6=cm}
V m

i

θ1
i

,

where we set V m
i to

V
m

i =
[PΘ (i,xm

1:N )]η

|C|
P

c6=cm

[PΘ (c,xm
1:N )]η

.

Case B: For the attribute variables, i.e. j > 1, we
differentiate correspondingly and have

∂ log dm
Θ

∂θ
j

i|h

=
u

j,m

i|h

θ
j

i|h

− 11{h1 6=cm}V
m

h1

v
j,m

i|h\h1

θ
j

i|h

,

where v
j,m

i|h\h1
= 11n

zm
j

=i and zm
Πj

=h\h1

o.

Hence, the gradient ∂M(B|S)
∂Θ for Case A and Case B is

∂M (B|S)

∂θ1
i

=
M

X

m=1

s
m,λ
Θ

θ1
i

ˆ

u
1,m
i − 11{i6=cm}V

m
i

˜

and

∂M (B|S)

∂θ
j

i|h

=

M
X

m=1

s
m,λ
Θ

θ
j

i|h

h

u
j,m

i|h − 11{h1 6=cm}V
m

h1
v

j,m

i|h\h1

i

,

respectively. These derivatives are further used in Eq. (7)
resulting in the required gradient for the CG algorithm.
Hence, for Case A we obtain

∂M (B|S)

∂β1
i

=
M

X

m=1

s
m,λ
Θ

ˆ

u
1,m
i − 11{i6=cm}V

m
i

˜

− θ
1
i

M
X

m=1

|C|
X

c=1

s
m,λ
Θ

ˆ

u
1,m
c − 11{c6=cm}V

m
c

˜

,

and for Case B we have

∂M (B|S)

∂β
j

i|h

=
M

X

m=1

s
m,λ
Θ

h

u
j,m

i|h − 11{h1 6=cm}V
m

h1
v

j,m

i|h\h1

i

− θ
j

i|h

M
X

m=1

|Zj |
X

l=1

s
m,λ
Θ

h

u
j,m

l|h − 11{h1 6=cm}V
m

h1
v

j,m

l|h\h1

i

.

4 STRUCTURE LEARNING

This section provides three structure learning heuristics
– one generative and two discriminative ones – used in
the experiments in Section 5. Note that the parameters
during structure learning are optimized generatively
using maximum likelihood estimation [19].

4.1 Generative Structure Learning

The conditional mutual information (CMI) [31] between
the attributes given the class variable is computed as:

I (Xi;Xj |C) = EP (Xi,Xj ,C)

[
log

P (Xi,Xj |C)

P (Xi|C) P (Xj |C)

]
,

where EP (X) [f(X)] denotes the expectation of f(X)
with respect to P (X). It measures the information be-
tween Xi and Xj in the context of C. In [21], an algo-
rithm for constructing TAN networks using this measure
is provided. We briefly review this algorithm in the
following:

1) Compute the pairwise CMI I (Xi;Xj |C) for all 1 ≤
i ≤ N and i < j ≤ N .

2) Build an undirected 1-tree using the maximal
weighted spanning tree algorithm [19] where
each edge connecting Xi and Xj is weighted by
I (Xi;Xj |C).

3) Transform the undirected 1-tree into a directed tree.
That is, select a root variable and direct all edges
away from this root. Add to this tree the class
node C and the edges from C to all attributes
X1, . . . ,XN .

This generative structure learning method is abbreviated
as CMI in the experiments.
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4.2 Greedy Discriminative Structure Learning

This method proceeds as follows: a network is initialized
to NB and at each iteration an edge is added that
gives the largest improvement of the scoring function,
while maintaining a partial 1-tree. Basically, two scoring
functions have been considered: the classification rate
(CR) [32], [33]

CR (B|SV ) =
1

MV

MV
X

m=1

11{cm=arg maxc′ PΘ(c′|xm
1:N)}

and the CL [34]

CL (B|SV ) =

MV
Y

m=1

PΘ (cm|xm
1:N ) ,

where SV = {(cm,xm
1:N )}MV

m=1 is the validation data and
MV = |SV |.
The process of adding edges is terminated when there

is no edge which further improves the score. Thus, it
might result in a partial 1-tree (forest) over the attributes.
This approach is computationally expensive since each
time an edge is added, the scores for all O

(
N2

)
edges

need to be re-evaluated due to the discriminative non-
decomposable scoring functions we employ. Overall, for
learning a k-tree structure, O

(
Nk+2

)
score evaluations

are necessary. In our experiments, we consider the CR
score which is directly related to the empirical risk in [2].
The CR is the discriminative criterion that, given suffi-
cient training data, most directly evaluates the objective
(small error rate), while an alternative would be to use a
convex upper-bound on the 0/1-loss function [35]. Since
we are optimizing over a constrained model space (k-
trees) regularization is implicit. The CR evaluation can
be accelerated by techniques presented in [20], [36]. In
the experiments this greedy heuristic is labeled as TAN-
CR for 1-tree structures.
Recently, the maximum margin score was introduced

for discriminatively optimizing the structure of Bayesian
network classifiers [36]. As a search heuristic simulated
annealing was used, which offers mechanisms to escape
from locally optimal solutions. The maximum margin
optimized Bayesian network structures achieve good
classification performance.

4.3 Order-based Discriminative Structure Learning

In [37], [20], an order-based greedy algorithm (OMI-CR)
has been introduced which is able to find a discrimina-
tive TAN structure with only O

(
N2

)
score evaluations.

The order-based algorithm consists of 2 steps:

1) Establishing an ordering: First, a total ordering
≺ of the variables X1:N according to the CMI is
established. The feature that is most informative
about C is selected first. The next node in the
order is the node that is most informative about
C conditioned on the first node. More specifically,

this step determines an ordered sequence of nodes
X

1:N
≺ =

{
X1

≺,X2
≺, . . . ,XN

≺

}
according to

X
j
≺ ← arg max

X∈X1:N\X1:j−1

≺

[
I

(
C;X|X1:j−1

≺

)]
,

where j ∈ {1, . . . , N}.
2) Selecting parents with respect to a given order to

form a k-tree: Once the variables are ordered X
1:N
≺ ,

the parent XΠj
∈ XΠj

= X
1:j−1
≺ for each X

j
≺

(j ∈ {3, . . . , N}) is selected. In case of a small size
of XΠj

(i.e. N ) and of k a computational costly
scoring function to find XΠj

can be used. Basically,
either the CL or the CR can be used as cost function
to select the parents for learning a discriminative
structure. We restrict our experiments to CR for
parent selection (empirical results showed a better
performance). The parameters are trained using
ML learning. A parent is connected to X

j
≺ only

when CR is improved. Otherwise X
j
≺ is left par-

entless (except C). This might result in a partial
1-tree (forest) over the attributes.

The classification results of the order-based greedy algo-
rithm are not statistical significantly different compared
to the greedy algorithm. Similarly, the SuperParent al-
gorithm [32] is almost as efficient as OMI-CR achieving
slightly lower classification performance [20].

5 EXPERIMENTS

We present results for frame-based phonetic classifica-
tion using the TIMIT speech corpus [17], for handwritten
digit recognition using the MNIST [18] and the USPS
data, and for a remote sensing application. In the fol-
lowing, we list the used structure learning algorithms
for TAN networks:

• TAN-CMI: Generative TAN structure learning using
conditional mutual information (CMI).

• TAN-CR: Discriminative TAN structure learning us-
ing the naive greedy heuristic.

• TAN-OMI-CR: Discriminative TAN structure learn-
ing using the efficient order-based heuristic.

Once the structure has been determined discrimina-
tive parameter learning is performed. This is either
done using the proposed CG algorithm to maximize the
margin, labeled as CG-MM (see Section 3), or the CL
method (see Section 2.2). Additionally, we show results
for margin-based Bayesian network optimization using
convex relaxation, denoted as CVX-MM, and provide the
computational costs for both algorithms.
The parameters are initialized to the ML estimates for

all discriminative parameter learning methods.4 Similar
as in [10] we use cross tuning to estimate the optimal
number of iterations for the CG algorithm to avoid
overfitting. Additionally, the value of λ ∈ [0.001, . . . , 0.5]

4. Empirical results showed that the initialization of the Bayesian
network to the ML estimates for MM or CL optimization performs
better than pure random initialization.
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and κ ∈ [0.01, . . . , 0.5] resulting in the best classification
rate is obtained empirically using cross-tuning. We note
that instead of early stopping also regularization of the
parameters can be used to avoid over-training of the
models. In [5], concave priors have been suggested, how-
ever, ℓ1 or ℓ2-regularization in the unconstrained space of
β

j

i|h is an alternative. In any case, a weight measuring the
trade-off between objective function and regularization
term has to be determined by cross-validation. So there
is no benefit. Empirically, we could not observe any
advantage of regularization over early stopping in terms
of achieved classification performance.

Continuous features were discretized using recursive
minimal entropy partitioning [38] where the quantiza-
tion intervals were determined using only the training
data. Zero probabilities in the conditional probability
tables are replaced with small values ε. Further, we
used the same data set partitioning for various learning
algorithms.

5.1 Handwritten Digit Recognition and Phonetic
Classification

5.1.1 Data Characteristics

In the following, we provide details about the used data
sets:
TIMIT-4/6 Data: This data set is extracted from the
TIMIT speech corpus using the dialect speaking region
4 which consists of 320 utterances from 16 male and 16
female speakers. Speech frames are classified into either
four or six classes using 110134 and 121629 samples,
respectively. Each sample is represented by 20 mel-
frequency cepstral coefficients (MFCCs) and wavelet-
based features. We perform classification experiments on
data of male speakers (Ma), female speakers (Fe), and
both genders (Ma+Fe), all in all resulting in 6 distinct
data sets (i.e. Ma, Fe, Ma+Fe × 4 and 6 classes). The
data have been split into 2 mutually exclusive subsets
where 70% is used for training and 30% for testing. More
details about the features can be found in [39].
MNIST Data: We present results for the handwritten
digit MNIST data [18] which contains 60000 samples for
training and 10000 digits for testing. We down-sample
the gray-level images by a factor of two which results in
a resolution of 14× 14 pixels, i.e. 196 features.
USPS Data: This data set contains 11000 uniformly
distributed handwritten digit images from zip codes of
mail envelopes. The data set is split into 8000 images for
training and 3000 for testing. Each digit is represented
as a 16 × 16 grayscale image, where again each pixel is
considered as feature.

5.1.2 Results

Tables 1, 2, and 3 show the classification rates for
MNIST, USPS, and the six TIMIT-4/6 data sets for

various learning methods.5 Additionally, we provide
classification performances for SVMs using a radial basis
function (RBF) kernel.6 In particular, for TIMIT-4/6 we
only show results for the NB structure. The reason is that
the final step of MFCC feature extraction involves a dis-
crete cosine transform, i.e. the features are decorrelated.
Hence, we empirically observed that the independence
assumptions of the NB structure is a good choice for
these data sets.

TABLE 1
Classification results in [%] for MNIST data with standard

deviation. Best parameter learning results for each
structure are emphasized using bold font.

Parameter Learning
Classifier ML CG-MM CG-CL

NB 83.73±0.37 91.82±0.27 91.70±0.28
TAN-CMI 91.28±0.28 94.70±0.22 93.80±0.24

TAN-OMI-CR 92.01±0.27 94.94±0.22 93.39±0.25
TAN-CR 92.58±0.26 95.12±0.22 93.94±0.24

SVM (C∗ = 1, σ = 0.01) 96.40±0.19

TABLE 2
Classification results in [%] for USPS data with standard

deviation. Best parameter learning results for each
structure are emphasized using bold font.

Parameter Learning
Classifier ML CG-MM CG-CL

NB 87.10±0.61 95.23±0.39 93.67±0.44
TAN-CMI 91.90±0.50 95.23±0.39 94.87±0.40

TAN-OMI-CR 92.40±0.48 95.70±0.37 94.90±0.40
TAN-CR 92.57±0.48 96.30±0.34 95.83±0.36

SVM (C∗ = 1, σ = 0.005) 97.86±0.26

TABLE 3
Classification results in [%] for TIMIT-4/6 data with

standard deviation. Best results for each data set are
emphasized using bold font.

NB SVM
Parameter Learning C∗ = 1

Data ML CG-MM CG-CL σ = 0.05
Ma+Fe-4 87.90±0.15 92.09±0.15 92.12±0.16 92.49±0.14
Ma-4 88.69±0.25 92.97±0.20 92.81±0.20 93.30±0.20
Fe-4 87.67±0.25 91.57±0.21 91.57±0.22 92.14±0.21

Ma+Fe-6 81.82±0.20 85.43±0.18 85.41±0.18 86.24±0.18
Ma-6 82.26±0.28 86.20±0.26 86.28±0.26 87.19±0.25
Fe-6 81.93±0.28 84.85±0.26 85.12±0.26 86.19±0.25

Average 84.85 88.67 88.69 89.38

The classification rate is improving for more complex
structures using ML parameter learning. Discrimina-

5. The average CR over the six TIMIT-4/6 data sets is determined
by weighting the CR of each data set with the number of samples in
the test set. These values are accumulated and normalized by the total
amount of samples in all test sets.
6. The SVM uses two parameters C∗ and σ, where C∗ is the penalty

parameter for the errors in the non-separable case and σ is the variance
parameter for the RBF kernel.
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tively optimized structures, i.e. TAN-OMI-CR and TAN-
CR significantly outperform generatively learned, i.e.
TAN-CMI and NB structures. Discriminative parameter
learning produces a significantly better classification per-
formance than ML parameter learning on the same clas-
sifier structure. This is especially valid for cases where
the structure of the underlying model is not optimized
for classification [10], i.e. NB and TAN-CMI.
MM parameter optimization outperforms CL learning

for most data sets. However, SVMs outperform our
discriminative Bayesian network classifiers on all data
sets. For TIMIT-4/6 one reason might be that SVMs are
applied to the continuous feature domain. In Table 4
we compare the model complexity, i.e. the number of
parameters, between SVMs and the best performing
Bayesian network classifier. This table reveals that the
Bayesian network uses ∼ 108, ∼ 66, ∼ 212, and ∼ 259
times fewer parameters than the SVM for MNIST, USPS,
Ma+Fe-4, and Ma+Fe-6, respectively. It is a well-known
fact that the number of support vectors in classical SVMs
increases linearly with the number of training sam-
ples [8]. In contrast, the structure of Bayesian network
classifiers naturally limits the number of parameters. A
substantial difference is that SVMs determine the num-
ber of support vectors automatically while in the case of
Bayesian networks the number of parameters is given
by the cardinality of the variables and the structure. In
this way, the model complexity can be easily controlled
by constraints on the structure. We use cross-tuning to
select C∗ and σ for SVMs and parameter λ, κ, and the
number of CG iterations for MM learning of Bayesian
networks.
In contrast to SVMs, the used Bayesian network

structures are probabilistic generative models – even
when discriminatively learned. They might be preferred
since it is easy to work with missing features, domain
knowledge can be directly incorporated into the graph
structure, and it is easy to work with structured data. In
this paragraph, we demonstrate that a discriminatively
optimized generative model still offers its advantages
in the missing feature case. Our MM parameter learn-
ing keeps the sum-to-one constraint of the probability
distributions. Therefore, we suggest, similarly to the
generatively optimized models, to sum over the missing
feature values. The interpretation of marginalizing over
missing features is delicate since the discriminatively op-
timized parameters might not have anything in common
with consistently estimated probabilities (such as e.g.
maximum likelihood estimation). However, at least em-
pirically there is a strong support for using the density
P (C,X′) =

∑
X1:N\X′ P (C,X1:N ) where X

′ is a subset
of the features X1:N . This computation is tractable if the
complexity class of P (C,X1:N ) is limited (e.g. 1-tree) and
the variable order in the summation is chosen appro-
priately. In contrast, classical discriminative models are
inherently conditional and it is not possible to obtain
p(C|X′) from p(C|X1:N ). In particular, this holds for
SVMs, logistic regression, and multi-layered perceptrons.

These models commonly require imputation techniques
to first complete missing feature values in the data. Then
the classification approach is applied on the completed
data.
We are particularly interested in the case where ar-

bitrary sets of missing features for each classification
sample can occur during testing.7 In such a case, it is
not possible to re-train the model for each potential
set of missing features without also memorizing the
training set. In Figure 3(a), we present the classification
performance of discriminative and generative structures
using ML parameter learning on the MNIST data as-
suming missing features. The x-axis denotes the number
of missing features. The curves are the average over
100 classifications of the test data with uniformly at
random selected missing features. We use exactly the
same missing features for each classifier. We observe that
discriminatively structured Bayesian network classifiers
outperform TAN-CMI-ML even in the case of missing
features. This demonstrates, at least empirically, that
discriminatively structured generative models do not
lose their ability to impute missing features.
In Figure 3(b), we show for the same data set and

experimental setup that the classification performance
of a discriminatively parameterized NB classifier may
be superior to a generatively parameterized NB model
in the case of missing features. In particular, this advan-
tage holds for up to ∼80 missing features. For a larger
number of missing features the performance of NB-ML
is more robust. Additionally, NB-CG-MM seems to be
more robust to increasing number of missing features
compared to NB-CG-CL. This can be attributed to the
better generalization property of a margin-optimized
classifier.

5.2 Remote Sensing

We use a hyperspectral remote sensing image of the
Washington D.C. Mall area containing 191 spectral bands
having a spectral width of 5-10 nm.8 As ground reference
a classification performed at Purdue University was used
containing 7 classes, namely roof, road, grass, trees, trail,
water, and shadow.9 The aerial image using bands 63,
52, and 36 for red, green, and blue colors, respectively,
and the reference image are shown in Figure 4(a) and
(b). The image contains 1280× 307 hyperspectral pixels,
i.e. 392960 samples. We arbitrarily choose 5000 samples
of each class to learn the classifier. This remote sensing
application is in particular interesting for our classifiers
since spectral bands might be missing or should be ne-
glected due to atmospheric effects. For example radiation
within the visible range should be neglected in case of
clouds or darkness.

7. Note that we do not consider missing features during training of
the classifiers.
8. http://cobweb.ecn.purdue.edu/˜biehl/MultiSpec/hyperspectral.

html
9. http://cobweb.ecn.purdue.edu/˜landgreb/Hyperspectral.Ex.html
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TABLE 4
Model complexity for best Bayesian network (BN) and SVM.

Data N Number of SVs Number of SVM parameters Number of BN parameters
MNIST 196 17201 3371396 31149
USPS 256 3837 982272 14689

TIMIT-4/6 (Ma+Fe-4) 20 13146 262920 1239
TIMIT-4/6 (Ma+Fe-6) 20 24350 487000 1877
Washington D.C. Mall 191 11934 2279394 62566

(a)

(b)

Fig. 3. Classification performance on MNIST assuming
missing features. The x-axis denotes the number of miss-
ing features and the shaded regions correspond to the
standard deviation over 100 classifications: (a) Different
structure learning methods with generative parameter-
ization; (b) Different discriminative parameter learning
methods on NB structure.

We use various introduced generative and discrimina-
tive parameter learning algorithms on the NB network
structure. The classification performances are shown in
Table 5.

Remarkably, NB-CG-MM slightly outperforms SVMs
in this experiment. Additionally, the Bayesian network
employs ∼ 36 times fewer parameters than the SVM (see
Table 4). Figure 5 shows the influence of parameter κ in
the loss function (6) for λ = 0.02 on the classification
performance. The classification rate slightly improves

(a) (b)

Fig. 4. Washington D.C. Mall: (a) Pseudo color image of
spectral bands 63, 52, and 36; (b) Reference image.

TABLE 5
Classification results in [%] for Washington D.C. Mall data
with standard deviation. Best parameter learning result is

emphasized using bold font.
NB SVM

Parameter Learning C∗ = 1
ML CG-MM CG-CL σ = 0.05
81.07 89.34 87.01 88.98
±0.06 ±0.05 ±0.05 ±0.05

for κ = 0.5. However, the impact is moderate. Note
that the selection of κ is based on the cross-validation
performance on the training data.

Similar as for MNIST in Section 5.1, we report clas-
sification results for NB-ML, NB-CG-MM, and NB-CG-
CL assuming at random missing features during clas-
sification in Figure 6. The x-axis denotes the number
of missing features. We average the performances over
100 classifications of the test data with randomly miss-
ing features. The standard deviation indicates that the
resulting differences are significant for a moderate num-
ber of missing features. Discriminatively parameterized
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Fig. 5. Influence of parameter κ of the loss function on
the classification rate for λ = 0.02.

NB classifiers outperform NB-ML in the case of up to
150 missing features. Furthermore, we present results
for SVMs where first imputation methods are used to
complete missing feature values in the data. Afterwards,
SVMs are applied on the completed data. In particular,
we use two imputation approaches: (i) mean value im-
putation (the missing value is replaced with the mean
value of the feature of the training data set); (ii) kNN
value imputation – the missing value is replaced with the
mean value (for discretized data the most frequent value)
of the k-nearest neighbors. The neighbors of a sample
with missing features are determined by the Euclidean
distance in the relevant subspace. In the special case
where k equals the number of training instances M this
method is identical to mean value imputation. We use
k = 5. As shown in Figure 6, mean value imputation de-
grades the classification performance of SVMs in case of
missing features significantly. Handling missing features
with NB classifiers is easy since we can simply neglect
the conditional probability of the missing feature Zj in
Eq. (1), i.e. the joint probability is the product of the
available features only.

Fig. 6. Washington D.C. Mall: Classification results for
NB-ML, NB-CG-MM, NB-CG-CL, and SVMs (using mean
value imputation) assuming missing features.

Figure 7 shows kNN value imputation results for
SVMs and NB-CG-MM. kNN feature value imputation is
slow and requires the training data during classification
of samples with at random missing features. However,

it provides more information to the classifier compared
to simple summation over the missing feature values as
shown for the NB-CG-MM case.

Fig. 7. Washington D.C. Mall: Classification results for
NB-CG-MM (summation over missing feature values),
NB-CG-MM (using kNN most frequent value imputation),
and SVMs (using kNN mean value imputation) assuming
missing features.

5.3 Margin Optimization using Convex Relaxation

In this section, we compare our CG-based margin opti-
mization to a recently proposed approach using convex
relaxation [1] in terms of classification accuracy and
computational efficiency. First we provide a short intro-
duction to convex relaxation for margin maximization
and give details on solving the convex problem for our
data. Unfortunately, Guo et al. [1] only provided results
on small-scale experiments, i.e. 50 samples and up to 36
features.

5.3.1 Background
Guo et al. [1] proposed to solve the maximum mar-
gin parameter learning problem for Bayesian network
classifiers by reformulating it as a convex optimization
problem. They introduced the parameter vector w with
elements w

j

i|h = log(θj

i|h) (in some order) and, using the

same order for the elements, the feature vectors φ(zm)
with elements u

j,m

i|h . Then, the probability of sample z
m

can be written as PΘ(Z = z
m) = exp(φ(zm)T

w), where
φ(zm)T denotes the transpose of φ(zm). The logarithm of
the multi-class margin (3) of the m-th sample becomes

log d
m
Θ = min

c6=cm
[φ(cm

,x
m
1:N ) − φ(c,xm

1:N )]T w.

In this way, the problem of learning the maximum
margin parameters of the Bayesian network can be recast
as

maximize
γ,w

γ s.t. ∆m,cw ≥ γ, ∀m and c 6= c
m

,

γ ≥ 0,

|Zj |
X

i=1

exp(wj

i|h) = 1, ∀j, h,
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where γ is the logarithm of the minimum of all sample
margins and ∆m,c = [φ(cm,xm

1:N )− φ(c,xm
1:N )]

T . The first
constraint ensures that all sample margins are greater
than γ and the third constraint that w parameterizes a
valid Bayesian network, i.e. w describes valid probability
distributions.
Finally, by introducing one slack variable ǫm for each

sample z
m, relaxing the constraints on the parameter

vector w and rewriting the objective function, Guo et
al. derived the optimization problem

minimize
γ,w,ǫ1,...,ǫM

1

2γ2
+ B

M
X

m=1

ǫm (9)

s.t. ∆m,cw ≥ γ − ǫm, ∀m and c 6= c
m

,

γ ≥ 0,

|Zj |
X

i=1

exp(wj

i|h) ≤ 1, ∀j, h,

ǫm ≥ 0, ∀m,

for determining the maximum margin parameters. The
parameter B can be used to control the slack effect
(similar as parameter C in SVMs). The above problem is
convex with convex inequality constraints. Hence, any
local minimum is also a global minimum. Furthermore,
under certain conditions on the structure of the Bayesian
network, the (typically) subnormalized parameter vector
w of a solution allows for re-normalization without
changing the decision function P (c|x1:N ) (see [4], [5] for
details).
There are many possibilities to solve the optimization

problem in Eq. (9). Any minimization method allowing
for a nonlinear objective function and nonlinear convex
inequality constraints can be used in principle. We de-
cided to use the large scale solver IPOPT [40] which
shows good performance in several applications (see
e.g. [41]).10 IPOPT applies an interior-point method [43]
to solve the problem in (9). It requires the objective func-
tion, its gradient, the constraint functions, the Jacobian
of the constraint functions, and the second derivative
of the Lagrangian function. To ensure short runtimes
and good results we used an adaptive strategy for the
barrier parameter, and let the algorithm run for up to 100
iterations or until sufficient precision was achieved.11 We
refer to solutions obtained by IPOPT as CVX-MM.

5.3.2 Experimental Comparison

Table 6 and Table 7 show the classification rates and run-
times for the different algorithms and datasets, respec-
tively. The classification rates of CVX-MM are slightly

10. We used IPOPT 3.9.2 in conjunction with MUMPS 4.9.2 [42], a
parallel sparse direct solver. IPOPT was compiled with Lapack 3.2.1
and BLAS from the Netlib repository (version fromMarch 2007). IPOPT
is typically faster than the function fmincon of MATLAB for this type
of optimization problem.

11. Good classifiers do not require highly accurate solutions. Hence,
the tolerance for the objective function is set to 10

−1 – reducing the
runtime of the algorithm compared to using default tolerance settings.

better than those of CG-MM, while the proposed algo-
rithm CG-MM12 is up to orders of magnitude faster.
For USPS the training data is separable with large

margin by a NB classifier, i.e. there exists a probability
distribution that factors according to a NB network
for which all samples in the training set are classified
correctly and for which samples from different classes
are separated by a large margin. Therefore, an optimal
solution of (9) has small objective for a large range of the
parameter B. This complicates the choice of B as well
as the tolerance settings for the interior-point optimizer
(the optimization problem has to be solved with high
precision while keeping the optimization tractable). In
our experiments we were not able to find a setting
such that the achieved classification rate on the test set
is larger than 90.90% which is much smaller than the
classification rate of CG-MM.
The large computational requirements of CVX-MM are

caused by the convex formulation in Eq. (9): there is
one inequality for each conditional probability of the
network and for every additional training sample the
number of inequalities increases by |C|, i.e. the number
of classes. Further, there is an additional slack variable
resulting in an increase of the dimension of the search
space. The used test sets were the same as described
above. The runtime experiments were performed on
a personal computer with 2.8 GHz CPUs, 16 GB of
memory, not exploiting any (multicore) parallelization.
Furthermore, we fixed the regularization parameter B

to 1 for the MNIST data because of time reasons, but
selected it using cross tuning for the TIMIT-4/6 and
USPS data.

TABLE 6
Classification rate (CR) in [%] for different data using a

naive Bayes classifier.

Parameter Learning
ML CG-MM CVX-MM

Data CR CR CR B
MNIST 83.73 91.82 92.04 1

USPS 87.10 95.23 90.90 1

Ma+Fe-4 87.90 92.09 92.31 3.9 ·10−3

Ma-4 88.69 92.97 93.09 3.9 ·10−3

Fe-4 87.67 91.57 91.82 3.9 ·10−3

Ma+Fe-6 81.82 85.43 85.61 3.9 ·10−3

Ma-6 82.26 86.20 86.67 3.9 ·10−3

Fe-6 81.93 84.85 85.46 3.9 ·10−3

Convex relaxation for margin optimization is interest-
ing due to its sound theoretical background. However,
without further algorithmic developments its practical
application seems to be limited to applications using
only few training data and a low number of features.
In contrast, the proposed method for maximum margin
parameter learning can deal with large sets of training
data efficiently and achieves comparable classification
rates. Furthermore, we observed superior runtime per-

12. CG-MM is implemented in MATLAB.
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TABLE 7
Runtimes in [s] for different data using a naive Bayes

classifier (B as in Table 6).

Parameter Learning
Data CG-MM CVX-MM

MNIST 833 54 hours
USPS 113 21 hours

Ma+Fe-4 391 1338
Ma-4 168 842
Fe-4 87 844

Ma+Fe-6 202 4566
Ma-6 241 3505
Fe-6 108 3002

formance of the proposed method in the conducted
experiments.

6 CONCLUSION

We derived a discriminative parameter learning algo-
rithm for Bayesian network classifiers based on maximiz-
ing the margin. For margin optimization we introduced
a conjugate gradient algorithm. In contrast to previous
work on margin optimization in probabilistic models,
we kept the sum-to-one constraint which maintains the
probabilistic interpretation of the network, e.g. sum-
mation over missing variables is still possible. In the
experiments, we treat two cases of discriminative param-
eter learning – both optimization criteria (CL or MM)
were optimized with the CG method. Furthermore, we
applied various parameter learning algorithms on naive
Bayes and generatively and discriminatively optimized
TAN structures. Discriminative parameter learning sig-
nificantly outperforms ML parameter estimation. Fur-
thermore, maximizing the margin slightly improves the
classification performance compared to CL parameter
optimization in most cases.

Additionally, we provided empirical results for a max-
imum margin optimization approach based on convex
relaxation. The classification results of both maximum
margin parameter learning approaches are almost iden-
tical, whereas the computational requirements of our
CG-based optimization are up to orders of magnitude
lower. Margin-optimized Bayesian networks perform on
par with SVMs in terms of classification rate, however
the Bayesian network classifiers require fewer parame-
ters than the SVM and can directly deal with missing
features, a case where discriminative classifiers usually
require imputation techniques.
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APPENDIX: CL PARAMETER LEARNING

The CG algorithm relies on the gradient of the objective
function given as

∂CLL (B|S)

∂θ
j

i|h

=

M
X

m=1

2

6

6

6

4

∂

∂θ
j

i|h

log PΘ (cm
,x

m
1:N ) −

|C|
P

c=1

∂

∂θ
j

i|h

PΘ (c,xm
1:N )

|C|
P

c=1

PΘ (c,xm
1:N )

3

7

7

7

5

.

Similar as in Section 3.3, we distinguish two cases for
differentiating CLL (B|S), i.e. either C = i for j = 1
(Case 1) or C = h1 for j > 1 (Case 2).
Case 1: For the class variable, i.e. j = 1 and h = ∅, we
get

∂CLL (B|S)

∂θ1
i

=

M
X

m=1

»

u
1,m
i

θ1
i

−
W m

i

θ1
i

–

,

using Eq. (1) for differentiating the first term (omitting
the sum over j and h) and we introduced the class
posterior Wm

i = PΘ (i|xm
1:N ) as

W
m
i =

PΘ (i,xm
1:N )

|C|
P

c=1

PΘ (c,xm
1:N )

.

Case 2: For the attribute variables, i.e. j > 1, we
differentiate correspondingly and have

∂CLL (B|S)

∂θ
j

i|h

=

M
X

m=1

"

u
j,m

i|h

θ
j

i|h

− W
m
h1

v
j,m

i|h\h1

θ
j

i|h

#

,

where Wm
h1

= PΘ (h1|x
m
1:N ) is the posterior for class h1

and sample m and v
j,m

i|h\h1
= 11n

zm
j

=i and zm
Πj

=h\h1

o.

The conditional log likelihood given in Eq. (2) can be
optimized by a conjugate gradient algorithm using line-
search in a similar manner as given in Section 3.2. Again,
we re-parameterize the problem to incorporate the con-
straints on θ

j

i|h in the conjugate gradient algorithm. This

requires the gradient of CLL (B|S) with respect to β
j

i|h

which is computed using the chain rule as

∂CLL (B|S)

∂β1
i

=

|Zj |
X

k=1

∂CLL (B|S)

∂θ1
k

∂θ1
k

∂β1
i

=
M

X

m=1

ˆ

u
1,m
i − W

m
i

˜

− θ
1
i

M
X

m=1

|C|
X

c=1

ˆ

u
1,m
c − W

m
c

˜

for Case 1. Similarly for Case 2, the gradient is

∂CLL (B|S)

∂β
j

i|h

=

M
X

m=1

h

u
j,m

i|h − W
m
h1

v
j,m

i|h\h1

i

− θ
j

i|h

M
X

m=1

|Zj |
X

l=1

h

u
j,m

l|h − W
m
h1

v
j,m

l|h\h1

i

.
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MMI/MPE: A direct evaluation of the margin in speech recogni-
tion,” in International Conference on Machine Learning (ICML), 2008,
pp. 384–391.

[8] R. Collobert, F. Siz, J. Weston, and L. Bottou, “Trading convexity
for scalability,” in International Conference on Machine Learning
(ICML), 2006, pp. 201–208.

[9] C. Bishop, Neural networks for pattern recognition. Oxford Univer-
sity Press, 1995.

[10] R. Greiner, X. Su, S. Shen, and W. Zhou, “Structural extension
to logistic regression: Discriminative parameter learning of belief
net classifiers,” Machine Learning, vol. 59, pp. 297–322, 2005.

[11] O. Gopalakrishnan, D. Kanevsky, A. Nàdas, and D. Nahamoo,
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