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1. Maximum Margin Parameter Estimation1

The multi-class margin Guo et al. (2005); Pernkopf et al.2

(2012) of sample n is3

d̃n
Θ = min

c,cn

p (cn|xn,Θ)
p (c|xn,Θ)

= min
c,cn

p (cn, xn|Θ)
p (c, xn|Θ)

=
p(xn|Θcn )ρcn

maxc,cn p(xn|Θc)ρc
. (1)

If d̃n
Θ
> 1, then sample n is correctly classified and vice versa.

We replace the max operator by the differentiable approxima-
tion maxx f (x) ≈

[∑
x ( f (x))η

] 1
η , where η ≥ 1 and f (x) is non-

negative. In the limit of η → ∞ the approximation converges
to the maximum operator. Replacing the maximum with its ap-
proximation, we obtain

dn
Θ =

p(xn|Θcn )ρcn[∑
c,cn (p(xn|Θc)ρc)η

] 1
η

. (2)

Usually, the maximum margin approach maximizes the margin
of the sample with the smallest margin, i.e. minn=1,...,N dn

Θ
for

a separable classification problem Schölkopf & Smola (2001).
We aim to relax this by introducing a soft margin, i.e. we focus
on samples with a dn

Θ
close to one. Therefore, we consider the

hinge loss function according to

J̃ (X|Θ) =

N∏
n=1

min
[
κ, dn
Θ

]
, (3)
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where parameter κ > 1 controls the influence of the margin dn
Θ

in the hinge loss J̃ (X|Θ) and is set by cross-validation. Maxi-
mizing this function with respect to the parametersΘ implicitly
means to increase the margin dn

Θ
whereas the emphasis is on

samples with a margin dn
Θ
< κ, i.e. samples with a large pos-

itive margin have no impact on the optimization. Maximizing
J̃ (X|Θ) via EBW or gradient descent is not straight forward due
to the discontinuity in the derivative at dn

Θ
= κ. Therefore, we

propose to use for the hinge function h(y) = min
[
κ, y

]
a smooth

hinge function which enables a smooth transition of the deriva-
tive and has a similar shape as h(y). We propose the following
function inspired by the Huber loss Huber (1964). In particular,
we approximate the discontinuity by a circle segment as

h(y) =


y + 1

2 , if y ≤ κ − 1
κ − 1

2 (y − κ)2, if κ − 1 < y < κ
κ, if y ≥ κ

(4)

which requires to divide the dataX into three partitions depend-4

ing on y = dn
Θ

, i.e. X1 contains samples where dn
Θ
≤ κ − 1, X2

5

consists of samples with a margin in the range κ − 1 < dn
Θ
< κ,6

and X3 = X \
{
X1 ∪ X2

}
.7

Basically, there are other smoothing techniques available8

for non-smooth convex objectives, e.g. Nesterov (2005). In9

our case, smoothing of the objective function makes it10

amenable for gradient-based optimization methods while still11

approximating the original objective well. Experiments using a12

similar parametrized smooth hinge function show only a slight13

influence on performance for maximum margin Bayesian net-14

work classifiers Pernkopf et al. (2012). Furthermore, a similar15

approximation of the maximum margin objective outperforms16

a convex formulation (which requires relaxation of constraints)17

with respect to computational requirements, while the classifi-18



2

cation performance is almost identical.19

Using the smooth hinge function in (4), our objective func-
tion for margin maximization is

J (X|Θ) =

N∏
n=1

h(dn
Θ) (5)

=

∏
n∈X1

(
dn
Θ +

1
2

)
∏

n∈X2

[
κ −

1
2

(
dn
Θ − κ

)2
] κ|X3 |.

1.1. Optimization of the Margin Objective20

The EBW algorithm is an iterative procedure which can
be used to optimize rational functions Gopalakrishnan et al.

(1991). We use the EBW framework to optimize the
margin objective in (5) for the discrete model parameters
ρc, πc,i, ac,i, j, αc,i,m. The parameter re-estimation equation of the
form

θ
j
i ←

θ
j
i

(
∂ log J(X|Θ)

∂θ
j
i

+ D
)

∑
l
θ

j
l

(
∂ log J(X|Θ)

∂θ
j
l

+ D
) , (6)

is used, where θ j
i ≥ 0,

∑
i θ

j
i = 1, and j indicates a particular

discrete variable. EBW requires the partial derivative ∂ log J(X|Θ)
∂Θ

and D. Both terms are provided in the sequel. Specifically, the
derivative ∂ log J(X|Θ)

∂Θ
for the re-estimation equation (6) of the

EBW algorithm is

∂ log J (X|Θ)
∂Θ

=

N∑
n=1

sn ∂ log dn
Θ

∂Θ
(7)

where sn denotes a sample dependent weight given as follows:

sn =


dn
Θ

dn
Θ

+ 1
2
, if n ∈ X1

κdn
Θ
−(dn

Θ)2

κ− 1
2 (dn
Θ
−κ)2 , if n ∈ X2

0, if n ∈ X3

. (8)

Approximating p(x|Θc) with the probability of the most
probable state sequence of the Viterbi algorithm, i.e.

p(x|Θc) ≈ p∗(x|Θc) = πc,q∗1 bc,q∗1 (x1)
T∏

t=2

ac,q∗t−1,q
∗
t
bc,q∗t (xt), (9)

the log of the margin dn
Θ

of sample xn in Eq. (2) decomposes to

logdn
Θ = log(p(xn |Θcn )ρcn ) −

1
η

log
∑

c′,cn

(p(c′, xn |Θc′ )ρc′ )η

=logπcn ,i∗,ncn ,1
+

T n∑
t=1

logbc,i∗,ncn ,t
(xn

t )+
T n∑
t=2

logac,i∗,ncn ,t−1 ,i
∗,n
cn ,t

+logρcn

−
1
η

log
[ C∑
c′,cn

(
πc′ ,i∗,n

c′ ,1

T n∏
t=1

bc′ ,i∗,n
c′ ,t

(xn
t )

T n∏
t=2

ac′ ,i∗,n
c′ ,t−1

,i∗,n
c′ ,t
ρc′

)η]
, (10)

where i∗,ncn,t is the most probable state of the HMM of class cn
21

for a sequence xn at time t.22

the derivative for ρc of ∂ log dn
Θ

∂Θ
in (7) is

∂ log dn
Θ

∂ρc
=

11{c=cn}

ρc
−

11{c,cn}(p(xn |Θc)ρc)η−1 p(xn |Θc)∑
c′,cn

(p(xn |Θc′ )ρc′ )η
ρc

ρc

=
1
ρc

[
11{c=cn} − 11{c,cn}

(p(xn |Θc)ρc)η∑
c′,cn

(p(xn |Θc′ )ρc′ )η

]

=
1
ρc

[
zn

c − žn
c · r

n,η
c

]
, (11)

where

rn,η
c =

(p(xn|Θc)ρc)η∑
c′,cn

(p(xn|Θc′ )ρc′ )η
, (12)

zn
c = 11{c=cn} and (13)

žn
c = 11{c,cn}. (14)

Symbol 11{i= j} denotes the indicator function (i.e. equals 1 if the23

Boolean expression i = j is true and 0 otherwise).24

Furthermore, the partial derivatives of log dn
Θ

with respect to
πi, ac,i, j and αc,i,m are given as follows:

∂ log dn
Θ

∂πc,i
=

1
πc,i

[
un

c,i,1 − ǔn
c,i,1 · r

n,η
c

]
(15)

∂ log dn
Θ

∂ac,i, j
=

1
ac,i, j

[
yn

c,i, j − y̌n
c,i, j · r

n,η
c

]
(16)

∂ log dn
Θ

∂αc,i,m
=

1
αc,i,m

T n∑
t=1

[
γn

c,i,m,t

(
un

c,i,t − ǔn
c,i,t · r

n,η
c

)]
, (17)

where

un
c,i,t = 11{c=cn,i=i∗,nc,t }

(18)

ǔn
c,i,t = 11{c,cn,i=i∗,nc,t }

(19)

yn
c,i, j =

T n∑
t=2

11{c=cn,i=i∗,nc,t−1, j=i∗,nc,t }
(20)

y̌n
c,i, j =

T n∑
t=2

11{c,cn,i=i∗,nc,t−1, j=i∗,nc,t }
(21)

and

γn
c,i,m,t =

αc,i,m · N(xn
t |µc,i,m,Σc,i,m)

M∑
m′=1

αc,i,m′ · N(xn
t |µc,i,m′ ,Σc,i,m′ )

. (22)

1.2. Approximation of the Gradient25

The derivatives (11), (15), (16) and (17) are sensitive to small
parameter values. Merialdo Merialdo (1988) observed that low-
valued parameters ρc, πc,i, ac,i,m and αc,i,m may cause a large
magnitude of the gradient and the optimization concentrates on
those parameters. However, small parameter values indicate
that they are rarely used during the production of an observation
sequence. Hence, there is not sufficiently training data available
for reliably estimating very low probabilities and concentrating
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on low-valued parameters is unreliable. Therefore, he suggests
to focus on modifying better estimated high-valued parameters
during optimization by using an approximation of the gradients.
In particular, for gradients of the form ∂ log dn

Θ

∂θ
j
i

= 1
θ

j
i
(ci, j − c′i, j), as

in our case, he suggests to concentrate on high-valued parame-
ters by replacing the gradient by

∂ log dn
Θ

∂θ
j
i

≈
ci, j∑
j ci, j
−

c′i, j∑
j c′i, j

. (23)

This approximation of the gradients has been used for CLL
learning in Normandin & Morgera (1991); Normandin et al.
(1994). Unfortunately, approximating the gradient by (23)

cannot be applied to the derivatives of the margin, because
the approximated gradient disappears for any HMM parameter.
Therefore, we suggest an alternative approximation in order to
obtain reliable parameter updates. Since the unreliability of the
updates is caused by small parameter values due to high values
of the gradients Merialdo (1988), normalizing the gradient by a
sum-to-one constraint of the absolute gradient values keeps the
updates reliable. For gradients of the form ∂ log dn

Θ

∂θ
j
i

= 1
θ

j
i
(ci, j−c′i, j),

we propose to approximate the gradient by

∂ log dn
Θ

∂θ
j
i

≈

1
θ

j
i
(ci, j − c′i, j)

S∑
i′=1

∣∣∣∣∣ 1
θ

j
i′

(ci′, j − c′i′, j)
∣∣∣∣∣ . (24)

The resulting approximations of the derivatives in (11), (15),26

(16) and (17) are provided in the algorithm for maximum mar-27

gin (MM) training of HMMs in Appendix B. As an alternative,28

Woodland and Povey Woodland & Povey (2002) proposed an29

alternative mixture weight update rule using an iterative proce-30

dure.31

1.3. Approximation for the Gaussians32

EBW has been formulated for discrete probability distribu-33

tions. Normandin and Morgera Normandin & Morgera (1991)34

introduced a discrete approximation of the Gaussian distribu-35

tion assuming diagonal covariance matrices. This leads to the36

re-estimation equation for µc,i,m and Σc,i,m given as37

µ̄c,i,m ←

N∑
n=1

sn Tn∑
t=1

[
γn

c,i,m,t
(
un
c,i,t − ǔn

c,i,t · r
n,η
c

)
xn
t

]
+ Dµc,i,m

N∑
n=1

sn
Tn∑
t=1

[
γn

c,i,m,t
(
un
c,i,t − ǔn

c,i,t · r
n,η
c

)]
+ D

(25)

and

Σ̄c,i,m ← (26)

gc,i,m + D
(
Σc,i,m + (µc,i,m)2)

N∑
n=1

sn
T n∑
t=1

[
γn

c,i,m,t
(
un

c,i,t − ǔn
c,i,t · r

n,η
c

)]
+ D

− (µ̄c,i,m)2,

where gc,i,m =
N∑

n=1
sn

T n∑
t=1

[
γn

c,i,m,t
(
un

c,i,t − ǔn
c,i,t · r

n,η
c

)
(xn

t )2
]

and the38

squares of xn
t and µc,i,m are taken element-wise.39

1.4. Implementation of the MM-HMM EBW Algorithm40

The EBW algorithm converges to a local optimum of J (X|Θ)41

providing a sufficiently large value for D. Setting the constant42

D is not trivial. If it is chosen too large then training is slow43

and if it is too small the update may fail to increase the objec-44

tive function. In practical implementations heuristics have been45

suggested Woodland & Povey (2002); Klautau et al. (2003);46

Pernkopf & Wohlmayr (2010).47

In order to obtain positive covariances, the inequality48

gc,i,m,d + D(σc,i,m,d + µ2
c,i,m,d )

hc,i,m + D
−

( kc,i,m,d + Dµc,i,m,d
hc,i,m + D

)2
> 0 (27)

must hold for any covariance σc,i,m,d of dimension d ∈ D,
where

hc,i,m =

N∑
n=1

sn
T n∑
t=1

[
γn

c,i,m,t
(
un

c,i,t − ǔn
c,i,t · r

n,η
c

)]
(28)

and

kc,i,m =

N∑
n=1

sn
T n∑
t=1

[
γn

c,i,m,t
(
un

c,i,t − ǔn
c,i,t · r

n,η
c

)
xn

t

]
. (29)

Rearranging (27) leads to a quadratic inequality with respect to
D Valtchev et al. (1997):

σc,i,m,d︸︷︷︸
a

D2

+ (σc,i,m,dh + µ2
c,i,m,d + gc,i,m,d − 2kc,i,m,dµc,i,m,d)︸                                                  ︷︷                                                  ︸

b

D

+ gc,i,m,dh − k2
c,i,m,d︸             ︷︷             ︸

c

> 0 (30)

We propose to set

D = F ·max{D1,D2,D3}, (31)

where

D1,2 =
−(b) ±

√
b2 − 4ac

2a
and (32)

D3 = 1 +

∣∣∣∣∣∣∣min
i, j

∂ log J(X|Θ)

∂θ
j
i

∣∣∣∣∣∣∣ . (33)

D3 guarantees a positive parameter after the update in (6) and49

F > 1 regulates the convergence speed of the algorithm. The50

parameters Θ for discriminative learning are initialized to the51

MLE of the HMM determined by the EM algorithm. Generative52

model pre-training can be seen as a form of regularization Er-53

han et al. (2010). The class prior is set to the normalized class54

frequency in X, i.e. ρc = Nc
N . A detailed algorithm of maximum55

margin (MM) training for HMM is provided in Appendix B.56

Appendix B: MM-HMM EBW Algorithm57

The implementation of the EBW algorithm for maximizing58

the margin, i.e. MM-HMM EBW algorithm, is stated in Algo-59

rithm 1.60

The E-step of the MM-HMM EBW algorithm using the approx-61

imation of ∂ log dn
Θ

∂Θ
(see Eq. (24)) is depicted in Algorithm 2.62

In Algorithm 3, the M-step of the MM-HMM EBW algorithm63

using parameter updates of Eq. (6) is illustrated.64
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Input: {X1, . . .XC }

Output: ρc, πc,i, ac,i, j, αc,i,m,µc,i,m,Σc,i,m ∀c ∈ {1, . . . ,C}, ∀i, j ∈ {1, . . . , S };∀m ∈
{1, . . . ,M}

Initialization: For each c, Θc = {πc,i, ac,i, j, αc,i,m,µc,i,m,Σc,i,m}i, j∈{1,...,S },m∈{1,...M} is
initialized by MLE using the EM-algorithm. The class prior is set to
the normalized class frequency, i.e. ρc =

Nc
N

while J(X|Θ) not converged do
Determine: X1, X2, X3 based on (dn

Θ
)λ

Determine: sn ∀n ∈ {1, . . . ,N} based on X1, X2, X3

E-Step (see Algorithm 2)
Determine D (see Section 1.4)
M-Step (see Algorithm 3)

end
Algorithm 1: Discriminative Margin-based training of HMMs
(MM-HMM EBW algorithm).

E-Step:
for c← 1 to C do

rn,η
c ←

(p(xn |Θc)ρc )η∑
c′,cn

(p(xn |Θc′ )ρc′ )
η

∂logdn
Θ

∂ρc
←

1
ρc

[
zn
c−žn

c ·r
n,η
c

]
∑C

c′=1

∣∣∣∣∣∣∣ 1
ρc′

[
zn
c−žn

c ·r
n,η
c

]∣∣∣∣∣∣∣
∂ρc ←

∑N
n=1 sn ∂ log dn

Θ
∂ρc

for i← 1 to S do

∂ log dn
Θ

∂πc,i
←

1
πc,i

[
un
c,i,1−ǔn

c,i,1 ·r
n,η
c

]
∑S

i′=1

∣∣∣∣∣∣∣ 1
πc,i′

[
un
c,i′ ,1

−ǔn
c,i′ ,1

·rn,η
c

]∣∣∣∣∣∣∣
∂πc,i ←

∑N
n=1 sn ∂ log dn

Θ
∂πc,i

for j← 1 to S do

∂ log dn
Θ

∂ac,i, j
←

1
ac,i, j

[
yn
c,i, j−y̌n

c,i, j ·r
n,η
c

]
∑S

j′=1

∣∣∣∣∣∣∣ 1
ac,i, j′

[
yn
c,i, j′

−y̌n
c,i, j′

·rn,η
c

]∣∣∣∣∣∣∣
∂ac,i, j ←

∑N
n=1 sn ∂ log dn

Θ
∂ac,i, j

end
for m← 1 to M do

γn
c,i,m,t ←

αc,i,m ·N(xn
t |µc,i,m ,Σc,i,m )

bc,i (xn
t )

∀n ∈ {1, . . . ,C}

∂ log dn
Θ

∂αc,i,m
←

1
αc,i,m

Tn∑
t=1

[
γn

c,i,m,t

(
un
c,i,t−ǔn

c,i,t rn,η
c

)]
∑M

m′=1

∣∣∣∣∣∣∣ 1
αc,i,m′

Tn∑
t=1

[
γn

c,i,m′ ,t

(
un
c,i,t−ǔn

c,i,t rn,η
c

)]∣∣∣∣∣∣∣
∂αc,i,m ←

∑N
n=1 sn ∂ log dn

Θ
∂αc,i,m

end
end

end
Algorithm 2: E-step of the MM-HMM EBW algorithm.
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