
Greedy Part-Wise Learning of Sum-Product
Networks

Robert Peharz, Bernhard C. Geiger and Franz Pernkopf

Signal Processing and Speech Communication Laboratory
Graz, University of Technology

Abstract. Sum-product networks allow to model complex variable in-
teractions while still granting efficient inference. However, the learning
algorithms proposed so far are explicitly or implicitly restricted to the
image domain, either by assuming variable neighborhood or by assum-
ing that dependent variables are related by their values over the training
set. In this paper, we introduce a novel algorithm, learning the structure
and parameters of sum-product networks in a greedy bottom-up man-
ner. Our algorithm subsequently merges probabilistic models of small
variable scope to larger and more complex models. These merges are
guided by statistical dependence test, and parameters are learned using
a maximum mutual information principle. In experiments we show that
our method competes well with the existing learning algorithms for sum-
product networks on the task of reconstructing covered image regions,
and outperforms these when neither neighborhood nor variable relation
by value can be assumed.

1 Introduction

Recently, a new type of probabilistic graphical models called sum-product net-
work (SPN) was proposed [1]. Motivated by arithmetic circuits [2, 3] and aiming
at expressive models, still allowing efficient inference, they represent the network
polynomial of a Bayesian network [2] with a deep network architecture contain-
ing sum and product nodes. In that way, SPNs combine the domains of deep
(belief) learning and probabilistic graphical models. On the one hand, SPNs can
be interpreted as deep neural networks with sum and product nodes as neurons,
where the sum nodes compute a weighted sum (with non-negative weights) of its
inputs. Besides the network structure, the weights determine the network input-
output function, i.e. they represent the parameters of the network. In order to
allow efficient inference, the SPN should fulfill certain constraints on the net-
work structure, namely completeness (concerning sum nodes) and consistency
or decomposability (concerning product nodes) [1]. On the other hand, SPNs
represent Bayesian networks (BNs) with rich latent structure – since sum nodes
can be interpreted as hidden variables being summed out – with a high degree of
context-specific independence among the hidden variables. The observable vari-
ables are placed as leaves of the BN, interacting with each other only via their

latent parents. The BN interpretation opens the door for learning techniques
from probabilistic graphical models, such as EM.

In [1], a learning algorithm tailored for image processing was proposed. This
algorithm recursively divides an image into pairs of smaller rectangles, and learns
the weights of the allotted sum nodes using a kind of hard EM, penalizing the
evocation of non-zero weights1. This algorithm relies on locality of image re-
gions to define the basic SPN structure, and cannot be easily applied to do-
mains without notions of locality. In [5], a hard gradient descent method opti-
mizing the conditional likelihood was proposed, showing convincing results on
image classification tasks. The used structure is a 4-layered network on top of
a image-feature generation process proposed in [6]. Therefore, also this algo-
rithm is restricted to the image domain. Dennis and Ventura [7] use the same
algorithm as in [1] for learning the SPN parameters, but propose an algorithm
for finding the basic structure automatically. Their algorithm recursively splits
so-called regions, i.e. sets of observable random variables, into pairs of smaller
regions, using a heuristic application of k-means. This approach clusters vari-
ables together which have similar value trends over the dataset. Therefore, also
this approach is primarily useful for the image domain, and the prior knowledge
about locality is implicitly given by the fact that neighboring pixels typically
have similar color values. Furthermore, as the authors note, the application of
k-means in this manner is rather unusual and lacks justification.

In this paper, we propose a novel algorithm for learning SPNs, where our
structure learning mechanism is well justified and can be applied to discrete ran-
dom variables, continuous random variables, and mixtures thereof. Our method
does not rely on explicit or implicit locality assumptions, but learns the SPN
structure guided by independence tests and a maximum mutual information
principle. It constructs SPNs starting from simple models over small variable
scopes, and grows models over larger and larger variable scopes, building succes-
sively more expressive models (bottom-up approach). This gives an alternative
to the top-down approaches proposed in [1, 7], which determine the SPN struc-
ture by recursive splits of variable scopes. Therefore, our method is closer in
spirit to traditional training of deep belief networks [8–10], which also aim to
extract successively more abstract features in a bottom-up manner.

The paper is organized as follows: In section 2, we introduce our notation and
formally review SPNs. In section 3, we introduce our approach for learning SPNs
in a bottom-up manner. In section 4, we experimentally show that our method
competes well with the existing approaches in the task of image completion,
and succeeds them when their assumptions are not met. Section 5 concludes the
paper, and gives possible directions for future work.

1 The claimed `0-norm penalization in [1] is not truly implemented in the provided
software [4], since already evoked non-zero weights are not penalized any more.

2 Background and Notation

Assume a set of random variables (RVs) X = {X1, . . . , XD}, where each Xd can
take values out of the set val(Xd) ⊆ R. When val(Xd) is finite, we say that Xd

is discrete. In this case, inputs concerning Xd are represented using |val(Xd)|
binary indicator nodes. When val(Xd) is infinite, inputs can be represented
by distribution nodes (e.g. Gaussian). For now, let us assume that all RVs are
discrete. Let xj

d ∈ val(Xd) be the jth state of Xd, and Ijd be the corresponding
indicator node, which can assume values out of {0, 1}.

An SPN structure [1] is defined as a connected acyclic directed graph, whose
leaves are the indicator nodes for RVs X, and all non-leaves are either sum or
product nodes. The value of a product node is the product of values of its child
nodes. The values of a sum node is the weighted sum of the values of its child
nodes, where the weights are non-negative parameters. We assume SPNs which
are organized layer-wise, i.e. sum and product layers alternate when proceeding
to higher layers. Furthermore, the first layer is an input layer, the second is a
product layer and the last (output) layer is a sum layer. The alternation of sum
and product layers does not restrict generality, since both a sum node and a
product node can be used to reproduce the value of a child node of a preceding
layer. We assume that nodes are allowed to receive input only from a strictly
lower layer. This assumption does not restrict generality either, since the SPN
structure is per definition acyclic, and can always be organized in a feed-forward
structure. We call these SPNs (organized in layers and feed-forward) layered
SPNs.

We have L sum and L product layers, such that in total the SPN contains
2L + 1 layers, where the first layer is the input layer, containing the indicator
(or distribution) nodes. Let P l be the lth product layer (the (2 l)th layer in the
SPN), and Sl the lth sum layer (the (2 l + 1)th layer in the SPN). Let Sl

k be
the kth sum node in the lth sum layer, and like-wise P l

k for product layers. In
graphical representations of the SPN structure, we assume that nodes within
one layer are numerated from left to right. The parents of a generic node N are
denoted as pa(N), and the children are denoted as ch(N). Let the scope sc(N) of
a node be a sub-set of the index set {1, . . . , D} for RVs X. For an indicator node
Ijd, the scope is defined as sc(Ijd) = {d}. For sum and product nodes, the scope
is recursively defined as sc(N) =

⋃
C∈ch(N) sc(C). Let Xsc(N) be the sub-set of

X which is indexed by sc(N). A root is a node R with pa(R) = ∅. In [1, 7],
only SPNs with a single root R were considered, and where sc(R) = {1, . . . , D}.
In this paper, we also strive for SPNs with a single root, representing the full
variable scope; however, as intermediate step, we will consider also SPNs with
multiple roots, and also roots whose scope is a strict sub-set of {1, . . . , D} (see
section 3). For now, we assume SPNs with a single root R. A sub-SPN induced
by some node N is the SPN defined by the sub-graph induced by N and all its
descendants, including the corresponding parameters. N is the (single) root of
its induced sub-SPN.

Let e =
(
e11, . . . , e

|val(X1)|
1 , . . . , e1D, . . . e

|val(XD)|
D

)
denote some input to the

SPN, i.e. a binary pattern for the indicator nodes. Let N(e) denote the value of
node N for input e. For indicator nodes, Ijd(e) = ejd. To input complete evidence,
i.e. a variable assignment x = (x1, . . . , xD) to the SPN, the value indicator node
are set ejd = 1 if xd = xj

d, and ejd = 0 otherwise. When e encodes some complete
evidence x, we write e ∼ x, and also use N(x) for N(e). The values for sum and
product nodes are determined by an upward pass in the network.

The root-value R(x) is the output of an SPN for assignment x. An SPN
defines the probability distribution

P (x) :=
R(x)∑

x′∈val(X)R(x′)
. (1)

While (1) can also be defined for standard neural networks, SPNs become truly
powerful when they are valid [1], which means that for all state collections ξd ⊆
val(Xd), d ∈ {1, . . . , D}, it holds that∑

x1∈ξ1

· · ·
∑

xD∈ξD

P (x1, . . . , xD) =
R(e)∑

x′∈val(X)R(x′)
, (2)

where now ejd = 1 if xj
d ∈ ξd, and otherwise ejd = 0. In words, a valid SPN allows

to efficiently marginalize over partial evidence by a single upward pass. The
efficient marginalization in SPNs stems from a compact representation of the
network polynomial of an underlying Bayesian network [1, 2]. Poon and Domin-
gos [1] give sufficient conditions for the validity of an SPN, namely completeness
and consistency :

Definition 1. An SPN is complete, if for each sum node S all children of S
have the same scope.

Definition 2. An SPN is consistent, if for each product node P and each two
of its children C,C ′ ∈ ch(P), C 6= C ′, it holds that when an indicator Ijd is a

descendant of C, no indicator Ij
′

d , j 6= j′, is a descendant of C ′.

Completeness and consistency are sufficient, but not necessary for validity; how-
ever, these conditions are necessary when also every sub-SPN rooted at some
node N should be valid [1]. Definition 2 is somewhat cumbersome, and it is
also questionable how consistency should be interpreted in the case of continu-
ous RVs. Therefore, Poon and Domingos provide a simpler and more restrictive
condition, which implies consistency, namely decomposability:

Definition 3. An SPN is decomposable, if for each product node P and each
two of its children C,C ′ ∈ ch(P), C 6= C ′, it holds that sc(C) ∩ sc(C ′) = ∅.

Finally, we illustrate how continuous data can be modeled using SPNs. Follow-
ing [1], one can simply use distribution nodes (instead of indicator nodes) for
continuous RVs, e.g. with nodes returning the value of a Gaussian PDF (Gaus-
sian nodes) as output. A simple example, showing a 4-component GMM with

 ︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

w1 w2 w3 w4

Fig. 1. SPN representing a Gaussian mixture model over three variables X1, X2, X3

with 4 components and diagonal covariance matrix. The component priors (sum
weights) are w1, w2, w3, w4, satisfying w1 + w2 + w3 + w4 = 1, w1, w2, w3, w4 ≥ 0.

diagonal covariance matrix, is shown in Fig. 1. The parameters of the Gaussians,
mean and variance, are considered as parameters of the Gaussian nodes in the
input layer and are not shown in the figure.

3 Greedy Part-Wise Learning of SPNs

In this section, we present our approach for part-wise learning of SPNs, where
as in [1, 7], we restrict ourselves to complete and decomposable SPNs. We start
with some observations serving as guidelines for our approach. First of all, an
SPN with a single root R defines a probability distribution over Xsc(R) accord-
ing to (1). Consequently, an SPN with multiple roots R1, . . . , Rr defines multiple
probability distributions over Xsc(R1), . . . ,Xsc(Rr), respectively, where in general
scopes sc(Ri) and sc(Rj), i 6= j, can differ from each other. The representations
of these distributions potentially share computational resources (i.e. intermedi-
ate calculations) and parameters. For example, the (complete and decomposable)
SPN in Fig. 2 has 4 roots, where the roots S2

1 and S2
2 represent two (in gen-

eral distinct) distributions over the whole scope {X1, X2, X3}, and roots S1
3 and

S1
4 represent distributions over scope {X2, X3}. Furthermore, we see that each

sub-SPN is again an SPN over the scope sc(N), where in the simplest case an
SPN consists of a single node in the input layer. We call these single-node SPNs
atomic SPNs. In Fig. 2, all atomic SPNs are indicator nodes2. However, as al-
ready shown in section 2, atomic SPNs are not restricted to be indicator nodes,
but can also be distribution nodes. Even further, atomic SPNs can be probability
models with arbitrarily large scopes, not only modeling single variables – they are
merely not represented as SPNs in this framework, but represent some external

2 An indicator node Ijd is an SPN, which represents the distribution assigning all
probability mass to the event Xd = xj

d.

 ︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

Fig. 2. Example of a multi-root SPN over variables X1, X2, X3 with 3, 2 and 4 states,
respectively. Nodes with ◦ denote indicator nodes. For simplicity, weights of sum nodes
are omitted.

“input”-probabilistic models. Product nodes represent distributions which as-
sume independence between the variable sets indexed by their child nodes. Sum
nodes represent mixtures of distributions represented by product nodes. We rec-
ognize that larger SPNs are simply composite smaller SPNs, where the basis of
this inductive principle are atomic SPNs.

Using this interpretation of multi-root SPNs, we can define the trivial multi-
root SPN which merely contains atomic nodes. Fig. 3 shows the trivial SPN for
the same RVs as in Fig. 2. This SPN consists merely of the indicator nodes of

︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

Fig. 3. Most simple multi-root SPN over variables X1, X2, X3 with 3, 2 and 4 states,
respectively.

X1, X2, X3, which are at the same time roots and atomic distributions. The
key idea of our approach is to start from the trivial SPN containing only atomic
distributions, and generate larger and larger SPNs with successively increasing
scope, until we eventually obtain an SPN whose root has a scope over all RVs

X we aim to model. In this paper, the final model will have a single root, where
as intermediate step a series of multi-root SPNs is generated.

To make our approach precise, we adopt the notion of regions, partitions,
and region graphs [7], which represents SPNs on a larger scale. The notion of a
region is inspired by image modeling, i.e. when RVs X are the pixel values of
an image. However, while adopting terminology, the approach developed here is
not necessarily restricted to the image domain.

Definition 4. Given a layered, complete and decomposable SPN, the region R
with scope sc(R) ⊆ {1, . . . , D} is the set of atomic or sum nodes, which have
all the same scope sc(R). Regions containing only atomic nodes (e.g. indicator
or distribution nodes) are called atomic regions. Regions containing only sum
nodes are called composite regions.

In this paper, we assume for simplicity that regions are either atomic or compos-
ite, i.e. they do not contain atomic nodes and sum nodes simultaneously. This
restriction, however, is not essential, since we could model a region both with
“external” atomic models and with composite smaller models, i.e. with SPNs.
For some scope s, we define R(s) as the region R with scope s, i.e. sc(R(s)) = s.
While two SPN nodes can have the same scope, regions per definition have a
unique scope. Regions can be interpreted as dictionaries of distributions over
the same scope sc(R). In Fig. 2 and Fig. 3, regions are depicted as boxes with
rounded corners. We now define partitions [7], which describe the decomposition
of (parent) regions into smaller disjoint (child) regions.

Definition 5. Given a layered, complete and decomposable SPN, let Rp be a
region and Rc be a set of disjoint regions, i.e. sc(R) ∩ sc(R′) = ∅, ∀R,R′ ∈
Rc,R 6= R′ , and where sc(Rp) =

⋃
R∈Rc

sc(R). The partition P(Rp,Rc) is
the set of product nodes whose parent nodes are all contained in Rp, and which
have exactly one child in each R ∈ Rc. The scope of a partition sc(P(Rp,Rc))
is defined as sc(Rp).

Note that since we only consider layered, complete and decomposable SPNs,
each product node has to be contained in exactly one partition. Partitions do
not have a unique scope, since each parent region Rp can be composed by several
different partitions. We define the set of product nodes P(Rp) :=

⋃
P(Rp, ·),

which contains all product nodes with same scope. In Fig. 2 and partitions are
depicted as boxes with edged corners. A region graph is defined as follows.

Definition 6. Given a layered, complete and decomposable SPN; the region
graph G of this SPN is a bipartite directed acyclic graph, with two distinct set of
nodes R and P, where R are all non-empty regions and P are all non-empty
partitions of the SPN. Region nodes are connected only with partition nodes,
and vice versa. R ∈ R is a parent region of P(Rp,Rc) if and only if R = Rp.
R ∈ R is a child region of P(Rp,Rc) if and only if R ∈ Rc.

Using the notion of a region graph, we can define the parts of a region.

Definition 7. Let G be the region graph of a layered, complete and decomposable
SPN. The parts of a region R ∈ G is the set of regions

parts(R) := {R′|∃P(R,Rc) ∈ G : R′ ∈ Rc}. (3)

We are now ready to sketch our general approach, which is shown in Al-
gorithm 1. Algorithm 1 starts with the trivial multi-root SPN containing only

Algorithm 1 General Merge Learning

1: Initialization: Make trivial SPN and corresponding region graph G.
2: while stopping criterion not met do
3: Select Merge Candidates: Select set of A ≥ 2 disjoint regions Rc =

{Rc,1, . . . ,Rc,A}, with ∀a Rc,a ∈ G and P(Rp,Rc) /∈ G, where Rp :=
R(

⋃A
a=1 sc(Rc,a)).

4: Select Set of Features F ⊆ Rc,1 × · · · × Rc,A.
5: Ptmp ← ∅.
6: if Rp already contains sum nodes then
7: Ptmp ←

⋃
S∈Rp

ch(S).
8: end if
9: Delete all nodes in Rp.
10: Generate K sum nodes Sk, k = 1, . . . ,K.
11: for f =: (N1, . . . , NA) ∈ F do
12: Generate product node Pf .
13: Connect Pf as parent of Na, a = 1, . . . , A.
14: Connect Pf as child of Sk, k = 1, . . . ,K.
15: end for
16: Connect each product node in Ptmp as child of Sk, k = 1, . . . ,K.
17: Update region graph G.
18: Recursively learn parameters of Rp and of its ancestor regions.
19: end while

atomic regions. In each iteration, some disjoint regions Rc are selected and
merged into a parent region Rp, generating a new partition P(Rp,Rc). Note
that while in each iteration a partition P(Rp,Rc) is newly generated, i.e. it was
not in the region graph beforehand, the region Rp might already have been gen-
erated by an earlier merge. As in [1, 7], a collection of sum nodes, one from each
child region, is combined by product nodes. Here, a particular selection of child
region nodes is called a feature (cf. step 4), where each feature corresponds to a
product node (cf. steps 11–14). The number of generated sum nodes K will be
typically K � |F|, i.e. the sum nodes represent a compression of the generated
features. The quality of this compression depends on the parameter learning in
step 18. Since Rp might have been already existing in the region graph, also its
ancestor regions need to be retrained in a recursive upwards pass.

Algorithm 1 describes a general scheme for greedy part-wise learning of SPNs.
Depending on the strategy of selecting the merge candidates in step 3, of select-
ing appropriate features in step 4, and of learning parameters in step 18, we

obtain different learning algorithms. Further questions are to select K and the
stopping criterion. We treat these questions in the following sub-sections, where
our approach is guided by the concept of winner variables. Consider an inter-
mediate multi-root SPN. For each region R in the corresponding region graph
we define a winner variable

WR := WR(X) = argmax
i:Ni∈R

Ni(X), (4)

where we assume some arbitrary ordering of the nodes in R. As already noted,
a region can be interpreted as dictionary of distributions over the same scope.
The variable WR(x) is the indicator of the distribution in R which describes
Xsc(R) best for sample x, since the corresponding node represents the model
with highest-likelihood. With respect to some multi-root SPN, each variable WR
represents some abstract information of variables Xsc(R). The goal in our ap-
proach is to preserve and to abstract this information, when proceeding to higher
SPN levels.

3.1 Selecting Merge Candidates

We now discuss how to select merge candidates in step 3 of Algorithm 1. Similar
as in [1, 7] we set A = 2, i.e. we consider decompositions of a parent-region
into two sub-regions. The focus for selecting merge candidates is twofold: (i)
we aim to find merge candidates which are “advantageous”, and (ii) we want
to pursue a merging strategy which yields quickly an SPN with complete scope
{1, . . . , D}, i.e. which models all variables in X. When we neglect the latter
point, our algorithm will typically exhaust memory and overfit the SPN, since
there are 2D − 1 regions, and the number of partitions for a specific parent
region grows exponentially in its size. About the first point, to decide when
a merge is advantageous, we use independence tests, which are also used for
learning BN structures [11]. In BNs, an edge between two variables should be
present when they are statistically dependent. The major criticism about this
method is the unreliability of statistical (in)dependence tests, which either causes
unreliable models, or models with high inference cost. In SPNs, the variables to
be modeled are not directly connected by edges, but their interaction happens
over latent parents. Here the unreliability of statistical dependence tests do not
harm as much as in BNs, since introducing a new, possibly spurious partition,
does increase the inference cost only marginally.

Specifically, we use the Bayesian-Dirichlet independence test proposed in [12],
for two winner variables WR′ and WR′′ :

BD(WR′ ,WR′′) =

Γ (γ)
Γ (γ+M)

∏|R|
k=1

∏|R′|
l=1

Γ (γk,l+ck,l)
Γ (γk,l)(

Γ (α)
Γ (α+M)

∏|R|
k=1

Γ (αk+ak)
Γ (αk)

)(
Γ (β)

Γ (β+M)

∏|R′|
l=1

Γ (βl+bl)
Γ (βl)

) . (5)

Here ak, bl are the number of times, counted over all training samples, where
WR′ and WR′′ are in their kth and lth states, respectively, and ck,l is the number

of times where WR′ and WR′′ are jointly in their kth and lth states. αk, βl, and
γk,l are Dirichlet priors, here uniformly set to 1, and α =

∑
k αk, β =

∑
l βl

and γ =
∑

k,l γk,l. M is the number of samples in the data set. The lower
BD(WR′ ,WR′′), the more the winner variables WR′ , WR′′ are dependent, and
the more R′ and R′′ “prefer” to merge. To encourage a quick growing of the
SPN regions, we use the scheme shown in Algorithm 2. This selection scheme

Algorithm 2 Select Regions

1: if Select Regions is called the first time or |M| = 1 then
2: M← set of all atomic regions.
3: end if
4: Select Rc = {R′,R′′} ∈ M which minimize BD(WR′ ,WR′′), s.t. P(Rp,Rc) /∈ G.
5: M←M\Rc

6: M←M∪R(sc(R′) ∪ sc(R′′))
7: Return Rc = {R′,R′′}.

maintains a set of merging candidates M, which is initialized with the disjoint
atomic regions. In each iteration of Algorithm 1, the two most dependent regions
(by means of (5)) are selected from M and merged to a parent region. The two
selected regions are excluded from the merging candidates M and the parent
region is inserted. In this way, the generated region graph is guaranteed to be a
binary tree. When M = 1, i.e. when the root region has been reached, we start
the process again, i.e. M is reset to the set of all atomic regions. Then a parallel,
interleaved binary tree is grown, where the constraint P(Rp,Rc) /∈ G guarantees
that this tree is different from the first tree. This process, growing interleaved
binary trees, is repeated for several iterations (tree-growing iterations), where the
maximal number of iterations specifies a stopping criterion for Algorithm 1 (step
2). Note that due to the constraint P(Rp,Rc) /∈ G it can happen that in later
iterations no more merging candidates can be found in step 4 of Algorithm 2. In
this case, we also stop Algorithm 1.

3.2 Selecting Features and Learning Parameters

We now turn to the problem of selecting features and learning parameters in
Algorithm 1. The most general approach for selecting features F would be to
take the Cartesian product of the node sets {Rc,a}a=1,...,A, which for A = 2
grows quadratically in the number of nodes in the child regions. We reduce this
number and use F = {f = (Nk, Nl)|ck,l > 0}, where ck,l is defined in (5). In
words, we select those features, whose corresponding product node wins at least
once against all other potential product nodes. As already noted, K = |Rp| �
|F| = |P(Rp)| in Algorithm 1, so the sum nodes inRp represent a compression of
the product nodes P(Rp) corresponding to F . Therefore, we use an information
bottleneck method approach for learning the parameters [13]. Suppose we aim
to merge Rc to a region Rp. Recalling the definition of the parts of a region

(Definition 7), the aim is to maximize the mutual information between the winner
variable of Rp and the winner variables of parts(Rp) := {R′

1, . . . ,R′
|parts(Rp)|},

i.e.
maximize

{wk,f}
I(WR′

1
, . . . ,WR′

|parts(Rp)|
;WRp) (6)

where {wk,f} are the weights of the sum node Sk, i.e.

Sk(e) =
∑

f :Pf∈P(Rp)

wk,fPf (e). (7)

The weights satisfy
∑|P(Rp)|

f=1 wk,f = 1, wk,f ≥ 0. Since this problem can be
expected to be NP-hard, we restrict ourselves to a greedy solution, outlined in
Algorithm 3. Our method starts with a number of sum nodes identical to the
number of product nodes P(R), where each product node is the child of exactly
one sum node. The weights are all initialized to 1, due to the normalization
constraints. Then we iteratively combine a pair of sum nodes to a single sum
node, such that the objective function (6) is maximized in each iteration; The
weights of the new sum node are updated according to the maximum likelihood
estimate

wk,f =

∑M
m=1 Pf (e

m)∑
f ′:Pf′∈ch(Sk)

∑M
m=1 Pf ′(em)

(8)

where em denotes the input evidence of the mth sample. Note that by this
approach each product node becomes the child of exactly one sum node, i.e. the
sum nodes have non-overlapping child sets.

Algorithm 3 Learn Parameters

1: For all product nodes Pi, i = 1, . . . , |F|, with scope s, generate a sum node Si in
Rp := R(s).

2: Connect Pi as a child of Si; set wi,i = 1.
3: while number of sum nodes > K do
4: Ibest ← −∞
5: for all pairs Si, Sj of sum nodes in Rp do
6: Generate tentative sum node Stmp.
7: Connect ch(Si), ch(Sj) as children of Stmp.
8: Set weights of Stmp according to (8).
9: Rtmp ← Stmp ∪Rp \ {Si, Sj}.
10: Estimate I(WR′

1
, . . . ,WR′

|parts(Rp)|
;WRtmp).

11: if I(WR′
1
, . . . ,WR′

|parts(Rp)|
;WRtmp) > Ibest then

12: Ibest = I(WR′
1
, . . . ,WR′

|parts(Rp)|
;WRtmp)

13: Rbest = Rtmp

14: end if
15: end for
16: Rp ←Rbest

17: end while

Algorithm 3 can be seen as a variant of the agglomerative information bot-
tleneck method (AIB) [14]. To see this, note that in each iteration AIB merges
two states of an RV X minimizing

I(g(X);X)− βI(g(X);Y) (9)

over all functions g with a range of cardinality |val(X)|−1. Here, Y represents the
relevant information and X the input data to be compressed. In other words,
the AIB method performs compression (by minimizing the first term), while
preserving relevant information (by maximizing the second term). In our case,
the relevant information is the set of winner variables of the parts of Rp, i.e.
WR′

1
, . . . ,WR′

|parts(Rp)|
. The input data X is the winner variable WRp before

merging two sum nodes. The difference to AIB is that we do not merge states of
the winner variable WRp , i.e. the relationship between two versions of the winner
variable WRp in consecutive iterations of Algorithm 3 is not functional. Instead,
each merge of two sum nodes leads to an update of the weights, and a node which
was a winner for a given input x need not remain the winner after the merge3.
The joint distribution of the winner variables R′

1, . . . ,R′
|parts(Rp)|,Rp changes.

By using the fixed weight training according to (8), our algorithm only has to

optimize over
(|Rp|−1) |Rp|

2 possible mappings4. Finally, our algorithm focuses
on preserving relevant information, i.e. we set β = ∞ which aims to preserve
a maximum amount of mutual information between the parent region and its
parts.

In this paper, we simply set K to a fixed value. However, [14] suggests a
method to set K in data-driven way: Each merge will inevitably lead to a loss of
information5 w.r.t. the relevant variables WR′

1
, . . . ,WR′

|parts(Rp)|
– if for a specific

number of sum nodes a merge causes a loss which is high compared to the
previous merges, this might suggests that a meaningful representation has been
achieved. While previous merges eliminated mainly redundant information, any
further merge would reduce the fidelity of the model significantly.

3 Indeed, if a sum node Sk not being merged was the winner for a given input x, it
will remain the winner even after merging two other sum nodes Si and Sj . However,
if one of the two sum nodes being merged won previously, the weight update may
reduce the value of the merged sum node such that a different sum node, say Sk,
wins for the input x.

4 From a communication systems point-of-view, one can interpret this as a cascade
of noisy communication channels, where each channel is represented by a stochastic
matrix which reduces the cardinality of the alphabet by one. At each channel output
one has the option of choosing among a set of further channels, until the desired
output alphabet size is achieved. The vital part is that not always the best channel
has to be chosen (i.e., the one with the maximum capacity), but rather the channel
which best transfers the desired information. As such, it might even happen that the
optimal channel has a small I(WRp ;WRtmp); due to previous stochastic mappings (or
noisy channels), WRp might contain irrelevance, which one of the following channels
could successfully remove.

5 This rather informal formulation about information loss can be made rigorous; for
a recent effort see [15].

4 Experiments

Poon and Domingos [1] demonstrated that SPNs achieve astonishing results on
the ill-posed problem of image completion, i.e. reconstructing occluded parts of
face images. To this end, they trained SPNs on the ORL face image data set [16]
and used MPE-inference (most probable explanation) to recover missing pixel
values, i.e. they inferred the most likely states of the occluded pixels and the
states of the latent variables represented by sum nodes. MPE-inference is effi-
cient in SPNs and serves as an approximation for MAP-inference, which actually
is appropriate for this task. We conjecture that, although marginalization and
MPE-inference is easy in SPNs, the exact MAP-problem is still intractable, since
MAP is inherently harder than MPE [17]. However, proving or disproving this
conjecture is future work and out of the scope of this paper.

We trained SPNs with the method by Poon and Domingos (PD) [1], the
method by Dennis and Ventura (DV) [7], and our method (Merge). As in PD
and DV, we model single pixels with several Gaussian nodes, where the means
are set by the averages of histogram quantiles, and the standard deviation is
uniformly set to 1. Using the notions introduced in this paper, this means that
single pixels are used as atomic regions, containing a set of Gaussian nodes. The
ORL faces contain 64× 64-pixels, which yields more than 8 million evaluations
of the BD score (5) in the first iteration. Although we cache evaluations of
the BD score, the computational effort is still large. Therefore, although we
emphasize in this paper that our algorithm does not need prior knowledge of the
problem domain, we use a similar approach as the PD algorithm, and introduce
a “coarser“ resolution level. We show the advantage of our algorithm, when no
prior knowledge can be assumed, in the experiment following below.

To find the coarse resolution level, we apply affinity propagation [18] on the
absolute value of the correlation coefficient matrix of the pixels, calculated on the
training set. This process performs an unsupervised segmentation into atomic
regions, which is shown in Figure 4. Within each atomic region, we train a

Fig. 4. Result of unsupervised segmentation of ORL faces using affinity propagation
on the absolute value of correlation coefficients between pixels.

multi-root SPN with 20 roots using our Merge algorithm; these 20 roots serve in
turn as atomic distributions for the overall Merge learning. Within each region,

pixels are treated as atomic regions, similar as in [1, 7]. For each application of
Merge learning, we used a single tree-growing iteration. In this experiment, we
set G = 10 for all three algorithms. As in [1, 7] we use K = 20 sum nodes per
composite region for all algorithms. Figure 5 shows results on the face image
completion task for PD, DV, and Merge. All three algorithms show convincing

Fig. 5. Examples of face image reconstructions using MPE-inference. Rows from top
to bottom: original image, covered image, PD [1], DV [7], Merge learning (this paper).

results but differ in the artifacts they produce. In Table 1 we summarize objective
evaluation measures for this learning task; the signal-to-noise ratios show that
Merge competes well with PD and DV, although no clear preference can be
shown. However, we see that while Merge achieves the lowest training likelihood,
it achieves the highest likelihood on the test set, stating that Merge generalized
best in this task, i.e. it seems to be more robust against overfitting.

Table 1. Evaluation measures on ORL data. Left: reconstruction SNRs for the top,
bottom, left, and right halves of face images covered. Right: Log-likelihoods on training
and test set, normalized by number of samples.

top bottom left right

PD 12.34 10.18 11.58 11.72
DV 11.69 9.29 10.43 10.83
Merge 12.43 9.83 10.96 11.78

Train Test

PD -4290.46 -5071.61
DV -4358.78 -4676.10
Merge -4493.46 -4667.04

In this first experiment we used prior knowledge about the problem domain,
by using AP for segmenting the image into atomic regions. To demonstrate that

our method does not rely on the incorporation of prior knowledge, we generated
an artificial modification of the ORL data set; First, we rescale the ORL images
to size 16 × 16, yielding 256 variables. As in [7], we permute all pixels, i.e. we
destroy the neighborhood information. Next, we discretized all pixels into 10
histogram bins and permute these randomly, i.e. we destroy the connection of
the RVs by their value. Then we again performed the same experiment as with
the large ORL data, where for each method we again used 10 Gaussian nodes
per pixel, setting their means on the discretized values of bins 1−10, and setting
the standard deviation uniformly to 1. Table 2 shows the result for the modified
ORL data. We now see a clear trend: PD, relying on locality shows consistently
the worst SNRs in the image reconstruction task. DV, not relying on locality, but
on similar value trends, is consistently better than PD. Merge shows consistently
the best SNRs. Similarly, looking at the log-likelihoods, we see that Merge shows
the best test likelihood, i.e. it generalizes best in this task.

Table 2. Evaluation measures on down-scaled and permuted ORL data. Left: recon-
struction SNRs for the top, bottom, left, and right halves of face images covered. Right:
Log-likelihoods on training and test set, normalized by number of samples.

top bottom left right

PD 15.16 8.49 12.11 10.37
DV 15.32 9.24 12.62 10.55
Merge 17.95 10.53 13.22 12.48

Train Test

PD -443.41 -893.82
DV -506.97 -623.22
Merge -551.97 -595.66

5 Conclusion

In this paper, we introduced a method to learn SPNs in a greedy bottom-up man-
ner, giving an alternative to the top-down approaches proposed so far. The main
principle we follow is that SPNs simply build composite and complex models out
of simple and small models in a recursive manner. The basis of this recursive
principle is given by what we call atomic or input distributions. We adopted
the notion of regions and interpret them as dictionaries of distributions over
the same scope. Product nodes or partitions serve as cross-overs of dictionar-
ies with non-overlapping scope, corresponding to the notion of decomposability.
These cross-overs yield a quickly growing number of new features or product
nodes. Sum nodes of the newly created region serve as compression of these
newly created features. This process can be seen as abstracting information,
when proceeding to higher levels.

We showed that our method competes well with existing generative ap-
proaches to train SPNs. Furthermore, we demonstrated that our method does not
rely on assumptions of the image domain, and shows the best performance when
these are not fulfilled. In future work, we want to explore potential engineer-
ing applications for our approach, such as signal, speech and audio processing.

Furthermore, we consider the discriminative paradigm, e.g. applying maximum
margin methods for classification. Finally, we want to investigate different struc-
ture and parameter learning techniques within our learning framework.

References

1. Poon, H., Domingos, P.: Sum-product networks: A new deep architecture. In:
Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intel-
ligence. (2011)

2. Darwiche, A.: A differential approach to inference in bayesian networks. ACM
50(3) (2003) 280–305

3. Lowd, D., Domingos, P.: Learning arithmetic circuits. In: Twenty Fourth Confer-
ence on Uncertainty in Artificial Intelligence. (2008) 383–392

4. Poon, H., Domingos, P.: http://alchemy.cs.washington.edu/spn/ (2011) (online).
5. Gens, R., Domingos, P.: Discriminative learning of sum-product networks. In:

Advances in Neural Information Processing Systems 25. (2012)
6. Coates, A., Lee, H., Ng, A.: An analysis of single-layer networks in unsupervised

feature learning. In: Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics. (2011)

7. Dennis, A., Ventura, D.: Learning the architecture of sum-product networks using
clustering on variables. In: Advances in Neural Information Processing Systems
25. (2012)

8. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural
networks. Science 313(5786) (2006) 504–507

9. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of
deep networks. In: Advances in Neural Information Processing Systems 19. (2007)
153–160

10. Bengio, Y.: Learning Deep Architectures for AI. Volume 2 of Foundations and
Trends in Machine Learning. (2009)

11. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

12. Margaritis, D., Thrun, S.: A bayesian multiresolution independence test for con-
tinuous variables. In: 17th Conference on Uncertainty in Artificial Intelligence.
(2001) 346–353

13. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. In:
Proc. Allerton Conf. on Communication, Control, and Computing. (September
1999) 368–377

14. Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: Advances in
Neural Information Processing Systems (NIPS), MIT Press (1999) 617–623

15. Geiger, B.C., Kubin, G.: Signal enhancement as minimization of relevant informa-
tion loss. In: Proc. ITG Conf. on Systems, Communication and Coding, Munich
(January 2013) 1–6 extended version available: arXiv:1205.6935 [cs.IT].

16. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face
identification. In: Proceedings of the 2nd IEEE Workshop on Applications of
Computer Vision. (1994) 138–142

17. Park, J.: Map complexity results and approximation methods. In: Proceedings of
the Conference on Uncertainty in Artificial Intelligence. (2002) 338–396

18. Frey, B., Dueck, D.: Clustering by passing messages between data points. Science
315 (2007) 972–976

