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Session contents

◮ Static nonlinearities

◮ Numerical approximation

◮ Radial basis functions (RBFs), Fourier and sigmoid kernels

◮ Polynomial fit

◮ Influence of approximation parameters
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Static Nonlinearities
◮ Output at time n is a deterministic function of the input at

time n: y [n] = f (x [n])

x [n] f (x [n]) y [n]
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Three Basic Problems

x [n] f (x [n]) y [n]

1. x [n], f (·) known: Compute the output

2. f (·), y [n] known: Inverse modelling

3. x [n], y [n] known: System identification
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◮ We will deal with problem 3

◮ Given: Points x = [x1, . . . , xN ] and
associated outputs
y = [f (x1), . . . , f (xN)]

→ Goal: Find a representation of NL
f (x [n])
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Representation of Static NL

◮ One possibility: Weighted sum of parametrized functions:

y [n] ≈ f̂ (x(n)) =

K∑

k=1

αkφk(x [n])

◮ K basis functions φk(x [n]), popular example: Radial Basis
Functions (depends on distance from a center), e.g. Gauss

φk(x [n]) = exp

{

−
(x [n]− µk)

2

2σ2
k

}

→ How to find K , widths σk , centers µk and weights αk?
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Parameter Optimization (1)
◮ Here: Choose K , σk and µk by hand, i.e.

◮ Examine plot of NL, make an educated guess
◮ Grid search for optimal parameters
◮ There are also formal, systematic ways (e.g. Bayesian

techniques)
◮ Choice of weights αk : Model is linear in the weights, easy

optimization

yi =
∑

k

αkφk(xi) There are N such equations

◮ Arrange in equation system
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φ1(xN) · · · φK (xN)






︸ ︷︷ ︸

Φ, (N×K), N≫K






α1
...

αK






NLSP SS 2019 5. April 2019 Slide 6/10



Graz University of Technology – SPSC Laboratory

Parameter Optimization (2)

◮ Overdetermined system, least-squares solution

α =
(

Φ
T
Φ

)
−1

Φ
T
y

◮ This happens in rbf.m (with Gaussian φk(x))

◮ Also in sigmoid.m and fourier.m, just for different kernels

◮ For certain parameter choices the problem above can be
ill-conditioned!
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Evaluation of approximation

◮ How do we evaluate the quality of the approximation?

◮ True and approximated output available, calculate error

e = y − ŷ = y −Φα

◮ Can be arbitrarily small iff f (x) is in signal space spanned by
basis functions φk(x)

◮ We use the Q2 value to evaluate different approximations

Q2 = 10 log10

∑

n |yorig [n]− yreconst [n]|
2

∑

n |yorig [n]|
2
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Polynomial approximation

◮ Another possibility for the approximation is given by
polynomials

f (x [n]) =

∞∑

k=0

ckx
k [n]

◮ Model also linear in coefficients → Least squares fit
analoguously possible (Matlab: help polyfit())

◮ If f (x) is differentiable, also Taylor series expansion possible

f (x) =

∞∑

k=0

1

k!

dk f (a)

dxk
(x − a)k =

∞∑

k=0

ck(x − a)k

→ See next session!
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Next meeting . . .

◮ Next meeting after easter break

◮ → May, 5.

◮ Will deal with analytical techniques for static NLs

NLSP SS 2019 5. April 2019 Slide 10/10


