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ABSTRACT
Setting up indoor localization systems is often excessively time-
consuming and labor-intensive, because of the high amount of
anchors to be carefully deployed or the burdensome collection of
fingerprints. In this paper, we present SALMA, a novel low-cost
UWB-based indoor localization system that makes use of only one
anchor and that does neither require prior calibration nor training.
By using only a crude floor plan and by exploiting multipath reflec-
tions, SALMA can accurately determine the position of a mobile tag
using a single anchor, hence minimizing the infrastructure costs, as
well as the setup time. We implement SALMA on off-the-shelf UWB
devices based on the Decawave DW1000 transceiver and show that,
by making use of multiple directional antennas, SALMA can also
resolve ambiguities due to overlapping multipath components. An
experimental evaluation in an office environment with clear line-of-
sight has shown that 90% of the position estimates obtained using
SALMA exhibit less than 20 cm error, with a median below 8 cm.
We further study the performance of SALMA in the presence of
obstructed line-of-sight conditions, moving objects and furniture,
as well as in highly dynamic environments with several people mov-
ing around, showing that the system can sustain decimeter-level
accuracy with a worst-case average error below 34 cm.
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• Computer systems organization → Embedded and cyber-
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1 INTRODUCTION
Localizing people and objects in a precise and accurate way is a
key requirement for future location-aware Internet of Things (IoT)
applications such as assisted living [54], health care [20], and robot
navigation [14, 24]. As of today, achieving an accurate position
estimation is still a grand challenge especially indoors, where global
navigation satellite systems such as GPS, Galileo, GLONASS, and
Beidou are not applicable due to the limited signal reception [4].
Challenges of indoor positioning.When estimating the position
of a device indoors, one needs to deal with severe attenuation,
multipath, and scattering of signals due to walls, furniture, or other
surrounding objects. This is, for example, a major challenge for
localization systems making use of narrowband RF technologies:
solutions based on IEEE 802.15.4 [18, 29], Bluetooth [1, 3], and Wi-
Fi [9, 16] are indeed highly susceptible to multipath fading, and can
hardly achieve a sub-meter accuracy in these settings [38].

Indoor environments are also highly dynamic: moving people
and objects may obstruct the line-of-sight (LOS) path between a
source and a receiver. This is, for example, particularly challenging
for localization systems based on optical technologies. Furthermore,
the unpredictable presence of interference sources (e.g., co-located
wireless devices using the same frequency band) can cause loss of
information and fluctuations in the received signal strength that
drastically affect the accuracy of positioning algorithms.

A practical localization system needs to achieve a high position-
ing accuracy despite these inherent properties of indoor environ-
ments. This task is further complicated by the fact that an ideal
indoor localization system should maximize the accuracy, efficiency,
and responsiveness of position estimation, whileminimizing deploy-
ment efforts and costs. Although a plethora of distinct approaches
has been proposed in the literature, none of them can yet achieve a
high accuracy at minimal costs and is thus widely accepted [35].
Deployment overhead still too high. After comparing the per-
formance of more than 100 state-of-the-art indoor localization sys-
tems under the same settings, Lymberopoulos and Liu [35] have
concluded that the set-up procedure of existing solutions is exces-
sively time-consuming and labor-intensive. As a consequence, the
use of most systems is still impractical in real-world deployments.

This state of affairs represents a serious problem, because recent
solutions based on Ultra-wideband (UWB) could easily achieve ac-
curacies in the order of decimeters [24, 31]. However, one cannot
fully exploit this outstanding positioning accuracy, because of the
high overhead in deploying the required infrastructure. These sys-
tems employ indeed multiple anchors (e.g., at least 8 [52], 9 [23],
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or 15 [24]), each of which needs to be carefully placed [19] in or-
der to maximize the system’s performance – a burden that is not
sustainable on a large scale. Similarly, localization systems based
on RSS profiling [16, 43] require a laborious offline data collection
process before deployment to acquire the radio maps (fingerprints).
Even worse, fingerprinting needs to be frequently repeated to cope
with environmental changes, such as furniture setup and human
motion: this makes the installation costs prohibitively high.

Minimizing the deployment effort of localization systems while
still allowing to sustain a high positioning accuracy is hence a long-
due fundamental step towards the creation of solutions that are
viable for real-world IoT applications.
Contributions. In this paper we present SALMA, a novel UWB-
based indoor localization system that can sustain a decimeter-level
accuracy despite the use of only a single anchor. SALMA removes
the need of multiple anchors by exploiting multipath propagation,
i.e., specular reflections originating from static objects. The system
works out of the box without any time-consuming setup phase,
as it does not require any prior calibration, training, or position
estimates (i.e., SALMA is based on neither fingerprinting nor other
learning algorithms). All that is needed is a crude floor plan showing
the geometry of the building in which the system is installed. The
map includes static objects such as walls and windows only, to
avoid adaptations if furniture or other objects are moved.

Starting from this floor plan and the known location and ori-
entation of the anchor, SALMA models the theoretical multipath
propagation and compares it with the estimated channel impulse
response (CIR) derived by the anchor node, as shown in Sect. 3.
Exploiting the position-related information embedded in the CIR
allows to unambiguously determine the position of a tag using a
single anchor with an accuracy comparable to the one achieved by
common multi-anchor UWB systems. This way, SALMA reduces
the infrastructure costs and setup time, hence addressing the omni-
present trade-off between accuracy and deployment costs.

We implement SALMA on off-the-shelf UWB devices based on
the popular Decawave DW1000 transceiver, building – to the best
of our knowledge – the first low-cost single-anchor UWB-based
indoor localization system. In particular, as shown in Sect. 4, we
support multiple tags simultaneously and shift the burden of posi-
tion estimation to the anchor node. This allows to keep the design
of the mobile tag simple, so to preserve its limited battery capacity.

We specifically implement SALMA for two-dimensional settings
in order to support map-based navigation and tracking applications
such as locating patients in hospitals [21], assistance for visually
impaired, disabled, and elderly people [7, 40, 47, 54], as well as mon-
itoring sport events [33, 45]. The applicability to three-dimensional
settings and the resulting challenges are discussed in Sect. 8.

We further show how overlappingmultipath components (MPCs)
may limit the performance of SALMA when using a single omni-
directional antenna. To alleviate this problem, we illustrate in Sect. 5
how to improve the robustness of SALMA usingmultiple directional
antennas. The latter enable the exploration of the angular informa-
tion of MPCs to enhance the system’s performance remarkably.

In Sect. 6, we carry out a thorough experimental evaluation1 of
the performance of SALMA in an office environment with clear LOS

1All datasets are publicly accessible under http://www.iti.tugraz.at/SALMA [12].

conditions. Among others, our results reveal that 90% of position
estimates obtained with SALMA exhibit less than 20 cm error, with
a median below 8 cm. This performance was obtained with a single
measurement snapshot from four directional antennas. We further
simulate how the accuracy of SALMA can be improved with a
higher number of antennas with narrower bandwidth.

In Sect. 7, we study the performance of SALMA in the presence
of obstructed LOS, showing that 90% of position estimates exhibit
less than 30 cm error, with a median below 15 cm. Furthermore, we
evaluate SALMA in a challenging setting (stockroom) reaching a
90% error of 44.5 cm, and show that moving objects and furniture
has a limited effect on the performance. We also deploy SALMA
in an office crowded with tens of people moving in/out across
24-hours, and show that – even in such a highly dynamic environ-
ment – SALMA sustains a worst-case average error below 34 cm.
Therefore, by exploiting the redundancy offered by multipath re-
flections, SALMA achieves a high accuracy even with obstructed
LOS, addressing an inherent vulnerability of traditional systems.

In summary, this paper makes the following contributions:
• We present SALMA, a UWB-based indoor localization sys-
temmaking use of only a single anchor and requiring neither
prior profiling nor calibration (Sect. 3);

• We implement SALMA on off-the-shelf UWB devices and
support multiple tags simultaneously (Sect. 4);

• We increase the robustness of the system to overlapping
MPCs by using multiple directional antennas (Sect. 5);

• We evaluate the performance of SALMA experimentally in
different scenarios with clear LOS and show that 90% of
position estimates exhibit less than 20 cm error (Sect. 6);

• We show that SALMA is resilient to obstructed LOS situa-
tions and that it sustains a high accuracy even in dynamic en-
vironments with objects and people moving around (Sect. 7).

2 SALMA: OVERVIEW
Fig. 1a shows a sketch of SALMA’s design. The system consists of
a single anchor (fixed infrastructure) and multiple battery-powered
mobile tags (devices to be localized). The anchor is connected to
and powered by a central notebook running a localization engine
that computes the position of each tag.

Every tag initiates a double-sided two-way ranging (DS-TWR)
with the anchor node, following a time division multiple access
scheme. The two-way ranging process allows the anchor to estimate
the distance d0 = ∥p−a∥, with p and a being the tag and the anchor
location, respectively (Fig. 1b). Upon completion of the DS-TWR
process, the anchor records the estimated distance d̂0, as well as
an estimate of the channel impulse response (CIR) provided by the
UWB transceiver, and forwards this info to the localization engine.
Exploiting multipath propagation. The CIR embeds information
about the multipath propagation consisting of reflections from
walls. Traditional UWB localization systems employ the CIR to
estimate the distance d0, which is related to the path delay τ0 as
follows: d0 = τ0 · c0, with c0 being the speed of light. Therefore,
these systems only use the path delay τ0, and forgo remaining
multipath components (MPCs). SALMA, instead, additionally uses
delays of reflected multipath components, which contain additional
geometric information (cf. τk and dk in Fig. 1b for k = 1, . . . , 4).
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Figure 1: Overview of SALMA’s design (a): the system makes use of the multipath propagation between a single anchor and a
tag i. The multipath propagation is characterized by the estimated CIR containing position-related information (b).

Localization engine. Starting from a floor plan showing the geometry
of the building in which the system is installed2, and the known
location of the anchor, SALMA models the theoretical multipath
propagation by employing the concept of virtual anchors [39] and
by building a hypothesized CIR for several candidate positions. The
latter are selected on a circle of radius d̂0 centered in a, with d̂0 being
the estimated distance derived from the DS-TWR. The localization
engine then compares the hypothesized CIR of each candidate point
with the one measured through the DS-TWR process, and returns
the best fit using maximum likelihood estimation.

As we will show in the next sections, exploiting the position-
related information encoded in the MPCs allows to unambiguously
and accurately determine the position of a tag using a single anchor.

3 SALMA: DESIGN PRINCIPLES
We describe next the mathematical principles behind the functional
stages of SALMA, showing how the system can leverage the infor-
mation that is contained in the observed CIR to accurately narrow
down the tag position. First, we present a model of the observed CIR
including the multipath component (MPC) parameters in Sect. 3.1.
We then explain in Sect. 3.2 how to use the known anchor position
and floor plan to determine virtual anchors that can relate the tag
position to parameters embedded in the CIR. Third, we describe in
Sect. 3.3 how these parameters are used in combination with the
observed CIR to obtain a position estimate. Sect. 4 then outlines
how these methods are implemented on off-the-shelf hardware.

3.1 Signal model
Taking advantage of multipath propagation requires its proper mod-
eling. In the following, we introduce the signal model relating the
effective system response (i.e., the observed CIR) and the parame-
ters of multipath components. We assume that a tag is equipped
with a single omni-directional antenna, while the anchor can carry

2While furniture and other objects do affect the performance of the system, the impact
stays in reasonable bounds as demonstrated in Sect. 6 and 7. Thus, there is no need to
keep track of whether tables, shelves, or other furniture have moved.

M antennas. Each antenna with indexm = 1, . . . ,M is character-
ized with its beampattern bm (ϕ). The observed CIR rm (t) between
a single tag and the anchor’smth antenna can be modeled as:

rm (t) =
K∑
k=0

αkbm (ϕk )sDW(t − τk ) +wm (t). (1)

The first term on the right-hand-side describes K specular MPCs,
i.e., dominant reflections, of the transmitted signal sDW(t). The latter
includes de-spreading and filtering at the receiver. Each MPC is
characterized by its complex-valued amplitude αk , angle of depar-
ture ϕk and delay τk . These MPCs are resulting from reflections
at flat surfaces such as walls, windows or doors and will be fur-
ther discussed in Sect. 3.2. The last termwm (t) denotes zero-mean
white Gaussian measurement noise with variance σ 2

w . Note that
the proposed signal model in (1) can model single omni-directional
as well as multiple directional antenna measurements.

The signal rm (t) is sampled with frequency fs = 1/Ts and Ns
samples are acquired. Hence, we use vector notation [26, 27] to
compactly describe the signal model in (1) as:

r = X (τ ,ϕ)α +w (2)

with 
r1
...

rM

 =

X1(τ ,ϕ)
...

XM (τ ,ϕ)

 α +

w1
...

wM

 (3)

and

rm = [rm (0 ·Ts), . . . , rm ([Ns − 1] ·Ts)]T

Xm (τ ,ϕ) = [bm (ϕ0)s(τ0) . . .bm (ϕK )s(τK )]

s(τk ) = [sDW(0 ·Ts − τk ), . . . , sDW([Ns − 1] ·Ts − τk )]
T

wm = [wm (0 ·Ts), . . . ,wm ([Ns − 1] ·Ts)]T

ϕ = [ϕ0, . . . ,ϕK ]
T; τ = [τ0, . . . ,τK ]

T; α = [α0, . . . ,αK ]
T.

Thus, the proposed signal model connects the MPC parameters
(αk ,ϕk ,τk ) with the expected CIR. In Sect. 3.2, we relate these
parameters to the tag position.
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τk

VA ak

Tag p

Anchor a0

ϕk

θsegk

](p − ak )

Figure 2: The concept of virtual anchors (VA) and its use in
calculating the angle of departure ϕk and delay τk .

3.2 Geometric model and virtual anchors
The MPC parameters of the CIR contain position-related informa-
tion regarding the tag location as well as the environment [28].
Following Euclidean geometry, simple relations can be obtained for
ϕk and τk . In particular, we employ the concept of virtual anchors
(VAs) [39] in order to relate MPC parameters to the tag positions
(see Fig. 2). To obtain the positions of the virtual anchors ak (k > 0),
the position of the physical anchor a0 , a is mirrored at each reflec-
tive flat surface. Fig. 2 illustrates the top-view of a single reflection.
A specular MPC (black solid) originates at the wall segment. Assign-
ment of the specular MPC to a virtual anchor (red cross) enables
an efficient calculation of the MPC parameters, delay, and angle.
The delay τk follows as geometric distance between tag and VA,
divided by the speed of light c0, according to

τk =
1
c0

∥p − ak ∥. (4)

We describe the angle of departure ϕk via the azimuth angle be-
tween tag and VA ](p − ak ) according to

ϕk = 2θsegk − ](p − ak ). (5)

Here, θsegk denotes the angle of the involved reflective surface that
was used to generate the VA ak (see Fig. 2).

Note that, in this work, we limit the multipath propagation
to single-bounce reflections, i.e., only a single reflective object is
bounced during the path’s propagation. Hence, the number of con-
sidered surfaces also determines the number of used MPCs K and
VAs, e.g., for the floorplan shown in Fig. 1b we set K = 4 resulting
in four VAs. In principle, the virtual anchor model can be extended
to cover higher-order reflections as well. However, higher-order re-
flections are attenuated strongly, due to their increased path length
and additional reflection losses. It should be also noted that, for
each tag position p, the visibility of the VAs has to be taken into
account. This means that we have to check the direct path from p
to the VA position ak for intersections with any obstacles or wall
segments. Only if there is a single involved intersection with the
correct wall segment, we can use the k-th MPC in the signal model.

While the parameters τk and ϕk can be directly derived from the
geometric model using the known VAs, a proper model for the MPC
amplitudes αk is difficult to obtain [27]. Hence, we propose to treat
αk as nuisance parameter, estimated directly from the observation r .

3.3 Position estimation
In the following, we present a position estimator based on the CIR
measurements. We aim for a maximum likelihood (ML) estimator,
derived from the signal model in (2). To allow efficient computations,
we assume complex-valued white Gaussian measurement noisew .

The likelihood p(r |p) of observation r conditioned on tag position
p follows as:

p(r |p) =
(

1
πσ 2

w

)MNs
exp

{
− 1

σ 2
w
∥r −X (τ ,ϕ)α ∥2

}
(6)

where τ and ϕ are related to the tag position via (4) and (5). Taking
the log of (6) results in the log-likelihood function

logp(r |p) = −MNs log(πσ 2
w ) − 1

σ 2
w
∥r −X (τ ,ϕ)α ∥2. (7)

This function depends on MPC amplitudes α . We propose to esti-
mate α as least squares solution [27] according to

α̂ = (XH(τ ,ϕ)X (τ ,ϕ))−1XH(τ ,ϕ)r (8)

with (·)H denoting the conjugate and transposed. The position esti-
mate p̂ maximizing the log-likelihood function can be formulated
as a non-linear optimization problem:

p̂ = argmax
p∈P

logp(r |p) = argmin
p∈P

∥r −X (τ ,ϕ)α̂ ∥2. (9)

The parameters τ and ϕ are determined via the geometry, and
these parameters in turn build the hypothesized CIR X (τ ,ϕ)α̂ ,
which is compared to the observed CIR r . The position for which
the hypothesis comes closest to the observation (and thus maxi-
mizes the likelihood) is chosen as the position estimate p̂. Search-
ing for a global maximum requires to evaluate (9) at each feasi-
ble tag position P, i.e., all positions within the communication
range to the anchor. As shown in [26], this exhaustive search can
be limited to potential candidate points that are located along a
circle around a with radius d̂0. We consider NC candidate points
P = {p(j)}NC

j=1 where each point is drawn independentlywith Gauss-
ian distributed radius d(j) ∼ N(d̂0,σ 2

DW) and uniformly distributed
angle ϕ(j) ∼ U(0, 2π ) [26]. Candidate points lying outside of the
room are discarded. These can be determined with simple line equa-
tion tests using the given floor plan. The number of candidate points
NC has a direct impact on the accuracy of the found estimate (9)
and will be studied in Sect. 6.3.

4 IMPLEMENTATION ON OFF-THE-SHELF
DEVICES

We implement SALMA on off-the-shelf UWB devices. After intro-
ducing the hardware in Sect. 4.1, we sketch the scheme used to
derive the distance between the tag and anchor as well as the CIR
rm in Sect. 4.2. We then illustrate how the system can support
multiple tags in Sect. 4.3 and describe the implementation of the
position estimation in Sect. 4.4.

4.1 Hardware
The system consists of Decawave EVB1000 platforms used for both
anchor and tags (Fig. 3a). These platforms employ the low-cost
IEEE 802.15.4-compliant UWB transceiver DW1000 [5]. The tags
are battery-powered and can be moved around freely. The anchor,
instead, is located at a fixed position a and is connected to a note-
book running MATLAB. The antenna at the tag is a self-made
linearly polarized omni-directional dipole antenna (Fig. 3b), but
any off-the-shelf omni-directional UWB antenna is suitable. At the
anchor, instead, we employ either a single omni-directional antenna
(Sect. 4.4) or multiple directional antennas (Sect. 5.2).
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(a) (b) (c)

Figure 3: Decawave EVB1000 node (a) with self-made omni-
directional dipole antenna (b) and switchable directional an-
tenna system employed in Sect. 5.2 (c).

Transmitted pulse shape. The proposed signal model in (1) re-
quires a known transmitted pulse shape sDW(t). The IEEE 802.15.4-
2015 standard allows the generation of an arbitrary pulse shape, as
long as it fulfills certain requirements on its cross-correlation with
a standard reference signal, a root raised cosine pulse with a roll-off
factor of β = 0.5 [50]. Decawave follows the IEEE 802.15.4-2015
standard, but does not provide information regarding the trans-
mitted signal of the DW1000. Therefore, we identify sDW(t) in a
measurement campaign. We place a transmitter and receiver 1m
apart from each other in clear LOS conditions. The receiver logs
1000 CIRs. In a post-processing step, we separate the LOS from the
CIR and calculate an average over these signals, which defines the
transmitted pulse shape sDW(t) of the DW1000.

4.2 Acquiring CIR and ranging
As shown in Fig. 1a, the localization engine of SALMA requires to
estimate the distance d̂0 between the tag and the anchor, and to
derive information about the multipath propagation by acquiring
the CIR provided by the DW1000.
Two-way ranging. Due to the missing synchronization between
anchor and tags, we employ a double-sided two-way ranging
scheme (DS-TWR) to estimate the distance d̂0 = ∥p − a∥ between
each tag and the anchor (see Fig. 4). The DS-TWR scheme con-
sists of three messages, each of which contains an 11-byte MAC
header embedding source and destination address, as well as a 16-bit
checksum. The payload of the first message (INIT ) and the second
message (RESP) is 1 byte long (MSG_ID). The last message (FINAL)
is 16 bytes long and contains the message ID as well as three 5-byte
timestamps [13]. The uncalibrated distance d̂TWR is calculated in the
DS-TWR scheme with [6, pp. 213]:

d̂TWR =
Tround1 ·Tround2 −Tr eply1 ·Tr eply2

Tround1 +Tround2 +Tr eply1 +Tr eply2
(10)

To calibrate the distance estimate, we perform 5000 DS-TWR
trials between the anchor and a tag placed 2 m apart from each
other. The derived variance and mean of the difference between
the reported distance d̂TWR and the true distance d0 = 2m is
σ 2
DW = (0.054m)2 and µ = 0.26m, respectively. Hence, the cali-

brated distance estimate follows as d̂0 = d̂TWR − µ. The distance d̂0
and the variance σ 2

DW define the distribution of the candidate points
around the anchor, as shown in Sect. 3.3.

TAG ANCHOR

Figure 4: Double-sided two-way ranging scheme.

Acquisition of CIR. Besides deriving the distance d̂0 between an-
chor and tag, the anchor acquires the CIR rm from the FINAL mes-
sage received from the tag. Fig. 1b illustrates an exemplary rm . The
sampling period is set toTs = 1/fs = 1/(2 · 499.2MHz) = 1.0016 ns.
Each sample consists of a 16-bit real integer and a 16-bit imaginary
integer resulting in a total size of 4048 Bytes. To reduce the amount
of data read via SPI from the DW1000, we limit the length of the
CIR to Ns = 100 samples.

Having the tags initiate the DS-TWR lets the anchor receive the
required information to run the localization algorithm (i.e., the INIT
and FINAL message). At the same time, it also allows to shift the
burden on the anchor, which is typically static and much more pow-
erful than tags, as it is line-powered and connected to a backbone
localization engine that performs the CPU-intensive calculations.
This is advantageous in real-world deployments, as tags are able
to control the position update rate based on their energy budget.
For example, by equipping a tag with an accelerometer, one can
initiate a position update only in case of a movement, and remain
in low-power mode otherwise.

4.3 Supporting multiple tags
We have so far considered only a single tag placed at an unknown
position p. SALMA can support up to Nt tags placed at positions
pi (with i = 1...Nt ) by employing a slotted ALOHA scheme. The
duration of a time-slot is related to the computation time necessary
to obtain a position estimate (evaluated experimentally in Sect. 6.4)
plus a guard interval of 1 ms at the start/end of each time-slot to
overcome mis-alignments due to clock drifts.

In our current implementation, the anchor periodically broad-
casts beacon messages embedding information about the time-slots’
occupancy every 30 seconds3. Tags are not assigned to specific time-
slots, but have instead the freedom to use any of the unoccupied
ones: this enables a tag to use several time-slots in case it requires a
higher update rate. In principle, this scheme may lead to collisions if
two tags pick the same time-slot. This is, however, a well-known is-
sue that has been largely studied in RFID systems where the reader
sends a request and tags pick a random slot to answer [8, 42]. Ex-
isting anti-collision schemes can be readily applied also in SALMA.
For example, the anchor can monitor the number of occupied slots
and adjust their number accordingly, or adapt the slot duration by
changing the number of candidate points.

3Due to the stable clock of the EVB1000 board (10 ppm), an even higher interval
between beacon messages can be safely selected.
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4.4 SALMA-light: Position estimation using
omni-directional antennas

After the anchor has acquired the estimated distance d̂0 and the CIR
rm , SALMA needs to carry out the position estimation as described
in Sect. 3.3.We provide a first implementation of such a position esti-
mation by equipping the anchor nodewith a single omni-directional
antenna: we call this implementation SALMA-light. When using a
single antenna, only a single CIR observation is available, which
greatly simplifies the signal model from (3) withM = 1.
Obtaining a position estimate. We use d̂0 to obtain candidate
points, as described in Sect. 3.3. At each candidate point, only the
MPC delays τk are calculated using (4), since the beampattern has
no effect on the estimate. The amplitude estimate from (8) requires
a computationally demanding matrix inversion, and, in the case of
overlapping MPCs, the matrix might not even be invertible. Hence,
we approximate the log-likelihood value from (9) iteratively [26]:

init : r (0) = r

for k = 1 . . .K : αk = sH(τk )r (k−1) (11)

r (k) = r (k−1) − αks(τk ) (12)

Essentially, we take the observed CIR r and sequentially subtract
sub-hypotheses (αks(τk )) by using pulses shifted to the respective
τk and weighted by single amplitude estimates αk . The resulting
r (K ) is then the left-over ‘residual’ signal. The latter represents how
similar the hypothesized and measured CIRs are, and is thus used as
an approximation of the log-likelihood. This procedure is repeated
for each candidate point and the one with highest log-likelihood
value is chosen to be the tag position estimate p̂.
Limitation: multipath ambiguities. While this method is sim-
ple, the non-accessible beampattern restricts the algorithm to delay
information only. This restriction makes the algorithm sensitive
to overlapping MPCs, as well as to ambiguities in the delay times
of MPCs, which may degrade the positioning performance signifi-
cantly, as shown in Sect. 6.2.

5 TACKLING MULTIPATH AMBIGUITIES
As discussed in Sect. 4.4, SALMA-light uses measurements from
a single antenna only, which makes the algorithm sensitive to
overlapping MPCs and ambiguities. In this section, we introduce
SALMA-full: an enhanced version of the system in which the anchor
makes use of multiple switchable directional antennas4. Hence, we
may now take advantage of the full signal model from (3), where
each antennam is characterized by its beampattern bm (ϕ) covering
one sector of the azimuth plane.

The combined observations of the antennas enable the system
to separate closely-arriving MPCs in the spatial domain. However,
the combination of several antenna measurements requires phase-
coherency between the measurements, which is not given by low-
cost transceivers. In the following, we tackle the phase-coherency
issue (Sect. 5.1), describe how to carry out position estimation using
directional antennas (Sect. 5.2), and highlight the key differences
in the employed hardware compared to SALMA-light (Sect. 5.3).

4This system was showcased at SenSys’17 [11].

5.1 Non-phase-coherent amplitude estimates
Phase-coherency demands accurate radio clocks, which are not
provided by off-the-shelf UWB transceivers like the DW1000. In
our case, this affects the implementation of the presented amplitude
estimates in (8). Inaccurate clocks between consecutive measure-
ments are perceived as a phase change in the baseband-equivalent
CIR. Thus, amplitude estimates from consecutive measurements
differ in their complex-valued phase αk,m ≈ e jφαk,m′ , where φ
denotes the unknown phase offset. However, the unkown phase
offset φ is required for the position estimate in (9).

To overcome the necessity of phase coherency, we follow the
approach presented in [27]. Assuming non-overlapping MPCs
(s(τk )

Hs(τk ) ≈ 0), an MPC amplitude αk can be estimated indepen-
dently as projection of the normalized signal sH(τk )

sH(τk )s (τk )
onto the

m-th measurement rm according to

αk,m =
sH(τk )rm
sH(τk )s(τk )

. (13)

Furthermore, the amplitude estimate in (8) can be written as
complex-valued average. Relaxing the complex-valued weighted
average by an absolute-valued average [41] results in an estimate
of the k-th MPC amplitude αavgk according to

α
avg
k =

M∑
m=1

|αk,m | · |bm (ϕk )|
2

M∑
m′=1

|bm′(ϕk )|
2

. (14)

The remaining phase ∠αk,m is extracted from the individual an-
tenna measurements and the amplitude estimate α̂avgk,m of them-th
antenna and k-th MPC results in

α̂
avg
k,m = α

avg
k exp(j∠αk,m ). (15)

This approximation combines MPC amplitudes from non-phase-
coherent measurements, taking into account the directivity of the
M antennas.

5.2 SALMA-full: position estimation using
directional antennas

In contrast to SALMA-light, SALMA-full collects observations from
M directional antennas. The antennas are physically separated (see
Fig. 3c), which results in different range estimates from tag to each
antenna. Since this difference is smaller than the standard deviation
of the DW1000 ranging, this error can be neglected. However, to
create the candidate points as described in Sect. 3.3, we use the
mean value of all ranges.

For each candidate point, the MPC parameters τ and ϕ are cal-
culated using the VA positions in (4) and (5), respectively. For the
amplitude estimates, the same iterative approach is followed as
in Sect. 4.4, but it is adapted to use the stacked observed CIRs
r = [rT1 , . . . ,r

T
M ]T and to take the non-coherent amplitude es-

timates from the previous section into account. For this, in the
iteration step (11), we use αavgk from (14), and for step (12), we use

r (k )m = r (k−1)m − bm (ϕk )α̂
avg
k,ms(τk ).
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This gives us a (stacked) residual r (K ) =
[
(r (K )

1 )T, . . . , (r (K )

M )T
]T

representing the similarity between the hypothesized andmeasured
CIR that is used as an approximation for the log-likelihood. The
final estimate p̂ is obtained by evaluating the log-likelihood for each
candidate point and by picking the one achieving the maximum.

Two aspects are worth of note regarding the beampatterns
bm (ϕ) of the antennas: first, we use 36 sampled values bm (i · Φs )
with a spacing of Φs = 10◦ obtained from a measurement cam-
paign. Second, when the anchor is employed, it can be oriented
with Φo = j · 10◦, where j might be chosen as desired. For the
implementation, this value has to be known. SALMA then uses
bm

(
⌊
ϕk+Φo+5

10 ⌋ mod 36
)
to approximate bm (ϕk ), also taking the ori-

entation into account.

5.3 Hardware differences
In contrast to SALMA-light, in SALMA-full we exploit four
self-made and low-cost directional antennas with a half-power
beamwidth of about 150◦ (see Fig. 3c). The antennas are mounted
such that each one points in a different cardinal direction. The
evaluation in Sect. 6.2 shows that, even with this wide beamwidth,
SALMA achieves an error below 20 cm for 90% of the estimated
positions. The higher number of antennas increases the acquisition
time of CIRs and distance estimates. Hence, the acquisition duration
is higher than that of SALMA-light, as discussed in Sect. 6.4.

6 EVALUATION
We evaluate the positioning capabilities of SALMA in challenging
indoor environments: an office (Room A, see Fig. 5a and 6a), and
a stockroom (Room B, see Fig. 5b and 6b). After describing the
experimental setup in Sect. 6.1, we answer the following questions:

• What is the benefit of using SALMA-full over
SALMA-light? (Sect. 6.2);

• What is the accuracy achieved by SALMA, and at which
computational costs? (Sect. 6.3);

• How long does it take to estimate a position, and what are
the implications on scalability? (Sect. 6.4);

• Do more (and better) antennas improve the performance of
SALMA? (Sect. 6.5).

We answer all these questions in Room A under clear LOS con-
ditions. In Sect. 7, we will then specifically evaluate how SALMA
performs in more challenging environments with obstructed LOS
(both rooms), and a dynamic environment due to moving objects
and people (Room A).

6.1 Experimental setup
We carry out the evaluation in an office containing obstacles and
scattering objects such as desks, chairs, shelves, and PC monitors,
as shown in Fig. 5a and 6a (Room A). We place the tag in NEP = 35
evenly distributed evaluation points, while fixing the anchor next to
the table. We mount both anchor and tag on a tripod at a height of
1.50 m, i.e., well above the obstacles, so to have clear LOS conditions.
The anchor is connected to a Lenovo ThinkPad T450s notebook
running MATLAB. The tag, instead, is battery-powered and can
move freely. The only pre-processing required by SALMA is to enter
the anchor location and orientation as well as the coordinates of the
surrounding four wall segments. The following settings are used
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Figure 5: Evaluation setup (2D-plan): we consider 35 evalua-
tion points (red crosses) in two different environments.

(a) Room A (office): Picture

(b) Room B (stockroom): Picture

Figure 6: Evaluation setup (Picture): the white dashed line
marks the measurement height under obstructed LOS.

by the DW1000: maximum data rate (6.8 Mbps), pulse repetition
frequency of 64 MHz, and a preamble symbol repetition of 1024.
Channel 7 is used due to its high bandwidth (900 MHz) and since
our self-made directional antennas are optimized for this band. At
each evaluation point (denoted by pEP), we perform 100 position
estimates, hence carrying out 3500 evaluations in total for both
SALMA-light and SALMA-full.We denote the i-th position estimate
by p̂i , and obtain the absolute position error with

Erri = ∥p̂i − pEP∥. (16)

Statistically, we look at the cumulative distribution function (CDF)
over the errors Erri using all evaluation points (i.e., 3500 estimates)
for different configurations, as illustrated in the upcoming sections.

6.2 SALMA-light vs. SALMA-full
In this section we examine the performance of both SALMA imple-
mentations comparatively.
Handling ambiguities. SALMA-light relies solely on the position
information contained in the arrival times of MPCs. Hence, the
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Figure 7: Evidence of multipath ambiguities.

resulting likelihood for the positions is highly multimodal, or in
other words, there are multiple regions that seem to best fit the
observed signal. This is demonstrated in Fig. 7, which shows the
positioning result using SALMA-light (Fig. 7a) and SALMA-full
(Fig. 7b) for one estimation run on position 34 (cf. Fig. 5a). The
colored dots indicate the candidate point positions, where the color
represents the likelihood values (red=high, blue=low). SALMA-light
has three regions showing similarly high likelihood values (red and
orange dots), caused by similarly longMPC paths, which results in a
completely wrong estimate. In contrast, SALMA-full can narrow the
estimate down to find the true position of the tag. This is possible
due to the combined directional antenna observations, where wrong
candidate points have low likelihood values because amplitude
values do not fit to the antenna patterns.
Quantitative comparison.We show the improvement quantita-
tively by accounting for all 3500 estimates via the CDF of the abso-
lute position error. Fig. 8 shows the CDF for SALMA-light (dashed
blue line) and SALMA-full (solid orange line). With SALMA-light,
67.3% of all evaluations have a position error below 25 cm. On the
other hand, 21.7% of the evaluations have an error above 1 m: these
outliers are caused by the multipath ambiguities, as just explained.
By using directional antennas, SALMA-full can mitigate these out-
liers: 90% of all evaluations are below 20.17 cm, whilst 99% of the
evaluations are below 29.72 cm.

We can hence conclude that SALMA-full clearly outperforms
SALMA-light thanks to the additional angular information. Hence,
we focus the next evaluations on SALMA-full only.

6.3 Localization accuracy
With the promising results shown in Sect. 6.2, we investigate the
accuracy of SALMA in more detail, and focus also on the computa-
tional costs.
Role of candidate points. We examine the impact of the num-
ber of candidate points used by SALMA-full. To this end, we
perform 3500 estimates for different number of candidate points
NC ∈ {50, 100, 200, 500, 1000}. Fig. 9 shows the resulting CDF: even
when using only 50 candidate points (blue, star), 90% of the es-
timates have an error below 30 cm. However, there are outliers
for about 5% of the estimates. Increasing the number of candidate
points removes the outliers and improves the performance to a “sat-
uration point” at about 200 candidate points (i.e., a higher number
of points gives negligible improvements). Hence, we make NC=200
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Figure 8: SALMA-light sustains an accuracy below 30 cm
only in 70% of the cases due to multipath ambiguities. By
exploiting the angular domain, SALMA-full exhibits an er-
ror below 30 cm in 99% of the cases (Room A).
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Figure 9: Impact of the number of candidate points on
SALMA’s accuracy: NC=200 acts a good trade-off.

our preferred setup and use it for all further evaluations, unless
stated otherwise. The number of candidate points increases the
computation time linearly, so NC can act as a trade-off between
computational costs and accuracy, as illustrated in Sect. 6.4.
Individual evaluation points. A more detailed display of the ac-
curacy is shown in Fig. 10a. For the 100 estimates at each position
of Room A, the mean (blue circle) and the 3-fold standard devi-
ation (black error ellipse) are shown. The former indicates that
there is little estimation bias (distance to ground truth). As for the
standard deviation, with the good ranging precision of UWB, the
ranging deviation is small (facing the LOS), while info gained by
the MPCs determines the angle deviation (perpendicular to the
LOS). Overall, the good performance is reinforced, while there are
certain positions (e.g., 9, 16, and 18) with a slightly higher bias. Of
special note is that the accuracy of SALMA does not degrade at
higher ranges: pos. 8, 16, and 24 are placed more than 4 meters apart
from the anchor, but their estimates are as accurate as the ones
obtained at positions much closer to the anchor. This is highlighted
in Fig. 11 showing the average position error with respect to the
real distance between anchor and tag. This stands in contrast to
many other indoor positioning techniques, where the inaccuracy
increases quickly with the range, e.g., visual systems [34].

6.4 Scalability
The number of supported tags by SALMA is limited by (i) the
computation time of the position estimation, (ii) the duration of
the DS-TWR, as well as (iii) the time needed to stream the CIR and
additional info to the notebook via USB. The duration of a DS-TWR
is mainly defined by the packet length of its three packets, which
is 3.49 ms. Streaming one CIR to MATLAB takes 4.62 ms.
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Figure 10: Error ellipses showing position bias and three-
fold standard deviation (Room A).

The computation time of the position estimation depends on the
notebook’s performance and on the number of candidate points.
In the evaluations, the algorithms are performed in MATLAB on a
Lenovo ThinkPad T450s with 2.59 GHz clock and 8 GB RAM. An
increase in the number of candidate points scales the computation
time linearly. Thus, we evaluate the time needed per candidate
point. SALMA-light takes 174.77±12.2 µs and SALMA-full requires
955.13±23.5 µs per candidate point. Thus, with NC = 200 candidate
points, the algorithms take 34.95 ms and 191.03 ms, respectively.
The overall duration of a position estimation with SALMA-light
when using NC = 200 is hence 43.06 ms, resulting in an update rate
of 23 Hz. Using NC = 50, instead, gives an update rate of 60 Hz.

When using SALMA-full, for each antenna a DS-TWR trial is
performed and four CIRs are acquired: this reduces the achievable
update rate. In total, SALMA-full requires 223.5 ms for NC = 200
and 79.8 ms for NC = 50, resulting in an update rate of about 4.5 Hz
and 12.5 Hz, respectively. Thus, SALMA can easily compete with
comparable solutions and outdoor positioning systems like GPS.

6.5 The role of the antenna
We examine next how SALMA would perform when using more
antennas with more directive beampatterns. As such antennas are
not yet commercially available, we simulate artificial CIRs (r ) and
ranging (d̂0) for the same tag positions shown in Fig. 5a. For any
tag position p, we can create an artificial CIR in two steps:

(1) Specular part: we shift and add pulses sDW(t−τk )weighted by
beampatternb(ϕk ) and amplitudeαk using the known delays
τk and angles ϕk . The amplitude exhibits free-space path-
loss and each reflection halves the magnitude. We consider
MPCs up to order two.

(2) Scattering part: we simulate diffuse multipath by drawing
realizations of a Gaussian random process whose variance
is defined by a double exponential power delay profile ac-
cording to equation (9) from [22]. Additionally we simulate
AWGN measurement noise with an SNR of 29.5 dB at 1 m.

This simulation setup allows us to adjust the half-power beamwidth
(HPBW) of the antennas and to recreate the effect of clutter by
setting a signal-to-interference5 ratio (SIR). The latter is defined
by the ratio between LOS and scattering energy. We determined
empirically that an SIR of 3 dB properly describes the environment.
5Interference, in this case, refers to self-interference due the scattering part.
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Figure 11: Average position error w.r.t. the real distance.
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Figure 12: Simulated performance of SALMA when using
multiple antennas with more directive beampatterns.
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Figure 13: Performance of SALMA in clear LOS, obstructed
MPC, and obstructed LOS situations in Room A.

To recreate the performance behavior from the SALMA-full mea-
surement runs described in Sect. 6.3, we set the HPBW to 150◦,
matching the properties of the used antennas. Additionally, we
carry out simulations using six antennas with a HPBW of 90◦, re-
flecting a higher quality implementation. Fig. 12 shows the results.
On the one hand, we can see that the SALMA-full simulation (red
curve) fits the measured results (purple curve) closely. A slightly
better performance is achieved in the simulation, because the im-
pact of bias due to floor plan inaccuracies is not present. On the
other hand, we can notice that, when simulating six antennas (blue
curve), the performance of SALMA improves significantly: the 90%
error decreases by about 10 cm to almost reach the sub-decimeter
mark, whilst 99% of the estimates achieve an error below 20 cm.

7 ROBUSTNESS TO NON-LINE-OF-SIGHT
AND DYNAMIC ENVIRONMENTS

Indoor environments are inherently highly dynamic due to mov-
ing humans and objects. Thus, the value of a localization system
strongly depends on (i) its performance under obstructed LOS, (ii)
its behavior in different environments and (iii) its robustness in
crowded settings. In this section, we discuss the performance of
SALMAunder non-line-of-sight (NLOS) conditions (Sect. 7.1), when
furniture is moved without updating the map (Sect. 7.2) and in the
case of a highly-dynamic and crowded environment (Sect. 7.3).
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7.1 Performance under NLOS conditions
In situations of a blocked LOS, range-based systems suffer from a
positive bias [36]. This is either caused by the lower propagation
speed in case the signal propagates through the obstacle, or, in case
of a fully blocked LOS, due to the misinterpretation of a reflection
as the direct path.
Distance bias. SALMA requires the distance estimate d̂0 between
anchor and tag to distribute the candidate points on a circle around
the anchor as described in Sect. 3.3. Thus, an obstructed LOS causes
an increase in the radius of the circle. First, we analyze the impact of
different objects on d̂0. We place tag and anchor 2 m apart from each
other and perform 1000 DS-TWR trials with different objects block-
ing the LOS. The objects included: a metal plate (800×450×3 mm),
PC monitors, and humans. The threshold-based mechanism of the
DW1000 was able to detect a leading edge corresponding to the
LOS in each of the trials. But, indeed, the obstructed LOS leads to
a positive bias in the range estimate. Metal plate and PC monitor
caused a range bias of 11 cm and 13.1 cm, respectively. Even in the
case of humans blocking the LOS, the leading edge was successfully
detected, but two humans blocking the LOS already led to a range
bias of 41.8 cm. Further evaluations will show that SALMA is robust
even in the case of a range bias.
Accuracy evaluation. SALMA is not just making use of the
LOS component, but also of specular MPCs. Thus, we evalu-
ate SALMA also in situations of blocked MPCs. We repeat the
evaluation in Room A described in Sect. 6.1: this time, however,
we mount the tag and the anchor at a height of 1.20 m, corre-
sponding to the height of monitors, shelves, and people in the
room. Depending on the position of the evaluation points, this
results in obstructed LOS for twelve of these points EPOLOS =

{3, 8, 9, 10, 15, 16, 18, 19, 25, 26, 33, 34}, which results in 1200 eval-
uations. Note that, for all these evaluation points, there were
also specular MPCs blocked by objects. For twenty points, in-
stead, the LOS was still clear but specular MPCs were blocked
EPOMPC = {1, 2, 4 − 7, 11 − 14, 17, 20 − 24, 27, 28, 32, 35}. In total,
2000 evaluations were acquired in these situations. The remaining
300 evaluations are still in clear LOS with no blocked MPCs, thus,
they are ignored. Fig. 13 (magenta dash dotted line) shows the CDF
of all evaluations under blocked LOS (EPOLOS ). The median is at
14.5 cm and the error for 90% of the estimates is still below 30.7 cm.
The blue dashed line in Fig. 13 shows the CDF just considering
evaluations where significant multipath components are blocked
by obstacles or humans (EPOMPC ). The median is at 10.25 cm and
the error for 90% of the estimates is below 30.52 cm. This shows
that SALMA remains robust even in the case of blocked MPCs.
Qualitative evaluation. In Fig. 10b, we see again the accuracy
for individual evaluation points, now for the obstructed LOS case.
While the position bias (distance blue circles to red crosses) did
not increase significantly, we can see that the variance in the an-
gular direction increases for most of the evaluation points. The
error ellipses shown in Fig. 10b indicate two evaluation points with
significantly higher variances (no. 17 and 18) as the other points.
The reason is the unfortunate position of the anchors in this case.
The PC monitors and obstacles at the left and right wall block the
respective MPCs, thus, the position information obtained at these
positions comes only from the LOS and the reflection from the
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Figure 14: Error ellipses showing position bias and three-
fold standard deviation with empty racks in Room B.
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Figure 15: Performance of SALMA in Room B in the case of
moving obstacles (storage racks are empty or filled).

window. Since these two reflections are arriving at the same angle,
SALMA suffers from a poor geometric configuration. This results in
ambiguities similar to the ones shown in Sect. 6.2. Due to significant
MPCs from the left and right wall, this situation was not evident in
the clear LOS case (see Fig. 10a).

7.2 Performance in stockroom with moving
obstacles

In Sect. 6 and 7.1, we have performed all the measurements in
Room A. To prove the capabilities of SALMA also in more challeng-
ing environments and in the presence of moving obstacles, we have
evaluated its performance also in Room B (see Fig. 5b and 6b).
Performance in more challenging environments. To chal-
lenge SALMA, we chose a stockroom that is larger than Room A
(46.7 m2 vs. 31.6 m2) and cluttered with desks, storage racks (bright
rectangles in Fig. 5b) and several other metal objects (see Fig. 6b).
We have mounted anchor and tag at a height of 1.20 m. Fig. 15
(solid orange line) shows the CDF of all evaluations in Room B.
The median is at 18.6 cm and 90% of all estimates obtain an error
below 44.5 cm. Thus, compared to the evaluation in Room A, the
performance of SALMA is slightly worse due to the larger room
with more clutter and wall materials with unfavorable reflective
properties (see Sect. 8). Fig. 14 shows the accuracy for individual
evaluation points. Similar to Room A (see Sect. 7.1), some positions

141



SALMA: Single-anchor Localization System using Multipath Assistance SenSys ’18, November 4–7, 2018, Shenzhen, China

07:0
0

09:0
0

11:0
0

13:0
0

15:0
0

17:0
0

19:0
0

21:0
0

0

0.2

0.4

0.6

0.8

1

time of day

er
ro
ri
n
m
et
er

0

5

10

15

nu
m
be
ro

fp
eo
pl
e

mean error

90% error

# of people

Figure 16: Snippet of a 24-hours experiment in dynamic environments. The dashed blue line depicts the mean error of 50
position estimates over time, whilst the solid orange line shows the 90% error. Despite the people moving in/out of the room
(green line), SALMA can sustain a decimeter-level position accuracy.

(e.g., 4, 5, 12, 18, 24) suffer from an unfavorable anchor placement
as the LOS is arriving from the same angle as strong reflections.
Moving obstacles. The performance of localization systems based
on RSS profiling and fingerprinting is highly affected by moving
obstacles. Thus, changing the furniture in a room often requires
to update or repeat measurements. To evaluate the performance
of SALMA in the case of moving obstacles or furniture, we have
stocked up the storage racks in Room B with full beer crates and
other objects (see Fig. 6b). As the goal of SALMA is to minimize the
setup effort, we do not model reflections from obstacles such as the
full storage racks. Fig. 15 shows that the position error (dashed blue
line), while higher due to the range bias introduced by obstructed
LOS, still stays in reasonable bounds, relatively unaffected by the
additional reflections. Thus, SALMA only slightly loses accuracy
in favor of practicability and setup time.

7.3 Performance in a crowded environment
For a final stress test of SALMA and to evaluate its behavior in a
dynamic environment including NLOS situations, we employed our
system again in the office scenario (RoomA) for a non-stop 24 hours
run. The system was exposed to the usual ongoing work flow that
involves multiple people passing by the system, thereby blocking
the LOS or MPCs, hence creating a dynamic environment. During
the 24 h experiment, SALMA localized three tags at representative
positions (positions 3, 15, and 33) simultaneously. The positions
were deliberately chosen to be under obstructed LOS. Every five
seconds we estimated the tag positions resulting in 51840 position
estimates. We evaluate the performance of the system on multiple
levels. Fig. 16 shows the mean error (dashed blue line) and the 90%
error (solid orange line) over 50 position updates from 07:00 - 21:00
o’clock. Additionally, we track the number of present people in the
room during the experiment (green stairstep graph). The figure
focuses on daytime, since over night no one was in the room and
the performance remained constant. It can be seen that the usual
working environment (with the two designated working people
present) does not impair the performance of the system providing
an average error below 11.2 cm. In terms of present people, there
are two events prominent in Fig. 16: at 11:00 o’clock there was a
meeting with five people and at 14:00 o’clock we have presented
SALMA to thirteen people making it in total fifteen people in the
room simultaneously. We asked people to move around the room
freely during the presentation, thus, the LOS and the MPCs were

obstructed in a dynamic fashion. Even though the error increases
during these periods, still, when the room was completely filled
with people, the average error was below 34 cm and the 90% error
below 79 cm. The latter indicates that SALMA is robust also in a
highly dynamic environment and under NLOS conditions.
Comparison to other multi-anchor systems. Comparing the
accuracy of SALMA with other UWB-based systems is difficult,
as they are either evaluated in mobile 2D [15, 31, 52] or static
3D [23, 24] scenarios. Silva et al. [49] report a 2D static LOS mean
error of 16.6 cm. SALMA instead achieves an average error of just
9.85 cm in clear LOS. Kempke et al. [23, 24] report a 90% error of
77 cm and 50 cm in static 3D, respectively. In contrast, SALMA
achieves a 90% error of 50 cm between 14:00-14:30 o’clock, thus,
under obstructed LOS and when up to fifteen people were walking
around. Therefore, it is fair to say that SALMA can compete and
even outperform existing systems, despite using just a single anchor.

8 DISCUSSION
Our evaluation demonstrates the capabilities of SALMA to perform
accurate positioning in typical indoor environments. However, it
has also highlighted a number of challenges and open questions
that we will elaborate in detail in this section.
Sensitivity to chosen anchor position. Due to SALMA’s princi-
ple, just one anchor per room is required. In our evaluations, we
examined two typical choices for anchor positions, namely, in the
vicinity of the room center (Room A) and in the corner of the room
(Room B). Both variants have pros and cons: in Room A we have a
full candidate point circle for many ranges, which increases the risk
of ambiguities, especially for SALMA-light. However, SALMA-full
can take full advantage of the beampatterns in all directions to
stay relatively unaffected (as we have demonstrated in Sec. 6.2).
In Room B, we have, at most, a quarter circle of candidate points:
on the one hand, this reduces possible ambiguities. However, on
the other hand, this results in higher ranges with reduced signal
strength and reduced benefit from the angular information. We also
pointed out some difficult positions in both rooms where LOS and
the strongest reflection come from the same direction, resulting in
a plateau in the likelihood which leads to a dilution of precision.
These cases exist no matter what anchor position is chosen.

The anchor orientation can be set arbitrarily, but it has to be
fixed and known to correctly weight the amplitudes.
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Including the third dimension. SALMA is designed specifically
to perform 2D positioning. This choice is rather pragmatic: physical
and algorithmic setup of the system are simplified dramatically,
enabling a practical implementation with short setup time and
efforts, while only using a single anchor. Also, many applications
(e.g., navigation tasks) do not require any height information. In
principle, the methods can be extended to the third dimension: (i)
determining the VAs can be done by mirroring at plane surfaces,
(ii) for the MPC angle one needs to take the elevation beampatterns
into account and (iii) the candidate points are placed on a range
sphere rather than circle. However, this drastically increases the
computational complexity and makes the position likelihood even
more multimodal. A 3D model of the environment could help to
avoid ambiguities due to floor or ceiling reflections, however, our
antennas exhibit a fairly narrow elevation pattern, hence, the impact
of ceiling, floor, and other reflections is limited significantly.
Effect of wall materials. The main setup effort for SALMA is the
determination of reflecting surfaces in the considered environment.
However, additional care has to be taken with regard to the material
of the surfaces. Preferably, materials such as glass and metal enable
good reflectors and including them in the models enhances the
position estimate. On the other hand, plaster boards or wooden
surfaces, even if they are flat and smooth, give little to no contri-
bution in terms of specular reflections and can in fact decrease
the performance. For example, in Room B, the eastern wall, even
though close to the anchor, is made out of plasterboard and does not
contribute with a specular multipath component. Thus, it should
not be included in the signal model as a source of a virtual anchor.

9 RELATEDWORK
Indoor localization technologies. Many RF technologies have
been investigated for indoor localization, such as Wi-Fi [9], Blue-
tooth [1, 3], and IEEE 802.15.4 [29, 44]. However, these systems
hardly achieve an accuracy below 1 m, require a high amount of
reference nodes, and typically come with a high deployment effort.
Optical systems are among the most accurate indoor localization
systems, but cannot inherently operate in NLOS conditions [34].
SALMA, instead, reaches a median error of 15 cm and a 90% error
of 30 cm even in obstructed LOS conditions. Acoustic systems can
also achieve decimeter-level accuracy, but their biggest enemy –
multipath propagation – is SALMA’s best friend [30, 37].
UWB indoor localization systems.UWB-based systems can also
achieve decimeter-level accuracy [35, 57]. Recently, several systems
have been implemented using low-cost UWB transceivers [15, 23,
24, 31, 49, 52]. However, these systems require a high amount of
anchors, typically between eight [31, 52] and fifteen [24]. SALMA,
instead, uses a single anchor and – to the best of our knowledge –
no comparable solution exists. In terms of accuracy, as discussed
in Sect. 7.3, it is fair to say that SALMA can compete and even
outperform existing systems, despite using just a single anchor.
Multipath-assisted localization systems. Theoretical works
have discussed the performance bounds of multipath-assisted in-
door localization via simulation [10, 17, 55] and using very expen-
sive, bulky and wired-synchronized equipment [25, 32, 39]. Instead,

with SALMA, we are the first to enable the exploitation of multipath
reflections for low-cost, low-power wireless localization systems.
Directional antennas to enable single-anchor systems. Sev-
eral works have exploited electronically steerable or switchable
antenna systems to enable single-anchor localization using narrow-
band technologies [2, 48]. However, SALMA outperforms all these
systems due to the exploitation of the position-related information
provided by the MPCs. Sun et al. [51] presented a UWB-based sys-
tem claimed to achieve decimeter-level accuracy. However, their
measurement setup is vague and a thorough analysis of the system
performance is missing. Quing et al. [46] and Zhang et al. [56]
presented similar systems, but solely based on simulation.

Although not exploiting directional antennas, also Chronos [53]
requires just a single access point to estimate the position of another
device. In particular, Chronos uses an omni-directional antenna
array and emulates a wideband radio on commodity Wi-Fi systems.
Still, due to the position-related information provided by the MPCs,
SALMA outperforms Chronos in terms of accuracy. Furthermore,
by using the license-free ISM bands, Chronos interferes and is prone
to the interference of other devices using the 2.4 GHz band.

10 CONCLUSIONS AND FUTUREWORK
In this paper, we present SALMA, a low-cost UWB-based indoor
localization system that exploits multipath reflections to tear down
the position estimation to a unique solution while only using a
single anchor. Besides a crude floor plan and the position of the
anchor, the system does not need any prior calibration or training
phase. By using directional antennas, we increased the robustness
of SALMA against overlapping MPCs. We extensively evaluated the
performance of SALMA under LOS and NLOS conditions, as well as
during a 24 h stress-test to challenge SALMA in dynamic settings.
Under LOS, SALMA achieved a median error below 8 cm and an
error below 20 cm for 90% of the position estimates. Even under
obstructed LOS and in a highly dynamic environment SALMA
sustains a high accuracy.

Our aim in this paper was to show the outstanding capabilities
of SALMAwithout using a tracking filter and solely utilizing single-
shot single-anchor measurements. In future work, we will combine
SALMA with a particle filter and an inertial measurement unit to
benefit from past position estimates. Moreover, we will perform an
exhaustive evaluation of SALMA in mobile environments.
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