Tag Localization in Passive UHF RFID

Daniel Arnitz, Ulrich Muehlmann, Klaus Witrisal

Graz University of Technology, Austria
NXP Semiconductors, Austria

This work has been funded by NXP Semiconductors and by the Austrian research promotion agency (FFG).
Outline

Introduction and Motivation

Ultra-Wideband Ranging
 Measurement Setup
 Ranging Performance

The UHF RFID Channel (Warehouse Portal)
 Ranging/Localization: Find the LOS
 Wave Propagation
 Backscatter Channel Parameters

Reducing the Bandwidth: Wideband and Narrowband Ranging
 Wideband FMCW Ranging
 Narrowband CW Ranging

Conclusion
UHF RFID Tag Localization ...
UHF RFID Tag Localization ... Why?

Intermec Technologies, Wikimedia (Kay-Uwe Rosseburg)
UHF RFID Tag Localization

Why?

1. mobile: detect + identify + localize
2. fixed (portal): read zone management
 ▶ identify false positive reads
 ▶ increase system reliability

How?
PASSIVE UHF RFID
How — Basically...

— direction finding —

- direction finding
 - direction/angle-of-arrival (AoA)
 - beamsteering (mechanically and electrically)

— range finding —

- range finding
 - time-(difference)-of-arrival (ToA, TDoA)
 - mapped to phase: phase-of-arrival
Why is it so difficult?

1. **Needed Accuracy**
 - 10 m error: airplane vs. tag

2. **System Properties**
 - constant tracking (\geq min) vs. single communication (ms)

3. **Wireless Channel**
 - isolated reflection vs. dense multipath
 - clear skies vs. massive self-interference

Images: Wikimedia (Peripitus), Intermec Technologies
Outline

Introduction and Motivation

Ultra-Wideband Ranging
 Measurement Setup
 Ranging Performance

The UHF RFID Channel (Warehouse Portal)
 Ranging/Localization: Find the LOS
 Wave Propagation
 Backscatter Channel Parameters

Reducing the Bandwidth: Wideband and Narrowband Ranging
 Wideband FMCW Ranging
 Narrowband CW Ranging

Conclusion
Measurement Setup (Portal)

Basic Setup Description

- vector network analyzer, 0.5 – 1.5 GHz
- gain patterns and setup: UHF RFID portal
- two transmitters ("readers"), two receivers ("tags")
- metal backplanes, (absorber backplanes, no backplanes)
MEASUREMENT SETUP (PORTAL)

- backplanes (metal)
- TX1
- TX2
- tag antennas (RX)
LOCALIZATION – UWB ToA Ranging

IR-UWB ranging, \(B = 600 \text{ MHz} \) (metal backplanes):
Outline

Introduction and Motivation

Ultra-Wideband Ranging
 Measurement Setup
 Ranging Performance

The UHF RFID Channel (Warehouse Portal)
 Ranging/Localization: Find the LOS
 Wave Propagation
 Backscatter Channel Parameters

Reducing the Bandwidth: Wideband and Narrowband Ranging
 Wideband FMCW Ranging
 Narrowband CW Ranging

Conclusion
CHANNEL – Localization Error

- **required bandw.:**
 - CHANNEL
- **isolate LOS?**
 - yes
 - no
- **error [m]**
- **τ** (LOS delay)
- **B** (signal bandwidth)
- **CIR**
- **τ** (avg. group delay)

Graphs:
- **|CIR|^2**
 - LOS
 - delay
- **|CIR|^2**
 - LOS
 - delay

Daniel Arnitz

UWB Forum
CHANNEL – Localization Error

Required bandwidth:

- **CHANNEL**
- **LOS (LOS delay)**
- **grp (avg. group delay)**
- **LOS (LOS K-factor)**
- **RMS (RMS delay spread)**

(ultra-)wideband limiting: noise

narrowband limiting: multipath propagation
CHANNEL – Empty Portal

- massive multipath propagation
- multiple bounces (gate-gate)
CHANNEL – Packed Liquids

- extremely dense around LOS
- multiple bounces (pallet-gate)
Channel – LOS Separable?

In UHF RFID?

- on the products: ≤ 1 cm
- ground/portal: ≈ 30 cm

$\Rightarrow 500$ MHz UWB
CHANNEL – Backscatter Parameters

Line-of-sight K-Factor (metal backplanes, bottom-left TX)
CHANNEL – Backscatter Parameters

RMS delay spread (metal backplanes, bottom-left TX)
Outline

Introduction and Motivation

Ultra-Wideband Ranging
 Measurement Setup
 Ranging Performance

The UHF RFID Channel (Warehouse Portal)
 Ranging/Localization: Find the LOS
 Wave Propagation
 Backscatter Channel Parameters

Reducing the Bandwidth: Wideband and Narrowband Ranging
 Wideband FMCW Ranging
 Narrowband CW Ranging

Conclusion
Localization – Ultra-Wideband Ranging

IR-UWB ranging, $B = 600$ MHz (metal backplanes):
Localization – Wideband Ranging

FMCW ranging, $B = 150$ MHz (metal backplanes):
Localization – Wideband Ranging

FMCW ranging, $B = 80$ MHz (metal backplanes):

![3D plot showing localization results.](image)
LOCALIZATION – Narrowband Ranging

Phase-based CW ranging, $B = 1$ MHz (metal backpl.).
Outline

Introduction and Motivation

Ultra-Wideband Ranging
 Measurement Setup
 Ranging Performance

The UHF RFID Channel (Warehouse Portal)
 Ranging/Localization: Find the LOS
 Wave Propagation
 Backscatter Channel Parameters

Reducing the Bandwidth: Wideband and Narrowband Ranging
 Wideband FMCW Ranging
 Narrowband CW Ranging

Conclusion
Conclusion

Range error distribution:

- IR-UWB, 600MHz
- FMCW, 150MHz
- FMCW, 80MHz
- 2FCW, 1MHz

CDF

Absolute range error [m]

Narrowband 0 Wideband 0 Ultra-Wideband 1