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Asymptotically Optimal Block Quantization 
ALLEN GERSHO, SENIOR MEMBER. IEEE 

Abmwet-In 19U3 W. R. Bennett used a compandiug model for uommi- 
form quantlzation and proposed the formula 

for the mean-square quantizing error where N is the. number of level&p(x) 
is the probability density of the input, and E’(x) is the slope of the 
compressor curve. The formula, an approximation based on the assumption 
that the number of levels is large and overI& distortion is negligible, is a 
useful tool for analytical studies of quantfzation. This paper gives a 
bedstlc argument generallhg Bemett’s formula to block quantization 
wbere a vector of random variables is quantized. The approach is again 
based on the. asymptotic situation where N, tke number of quantized 
output vectors, is very large. Using the resulting heuristic formula, an 
optimhtlon is performed leading to an expression for the minimum 
quantizing noise attainable for any block quantizer of a given block size k. 
The results are consistent with Zador’s results and speciaiize to known 
results for tke one- and two-dimensional casea and for the case of White. 
block length (k+m). The same heuristic approach also gives an alternate 
derivation of a bound of Elias for multidimensional quantization. Our 
approach leads to a rigorous metkod for obtaining upper bounds on the 
minimum distortion for block quantizers. In particular, for k = 3 we give a 
tigkt upper bound that may in fact be exact. ‘Ihe idea of representing a 
block quantizer by a block “compressor” mapping followed with an optimal 
quantizer for uniformly distributed random vectors is also explored. It is 
not always possible to represent an optimal quautizer with tbis block 
companding model. 

I. INTRODUCTION 

D IGITAL CODING of analog sources is today a 
subject of considerable importance, yet very little is 

understood about optimal block quantization. On the one 
hand, extensive results are available for the one-dimen- 
sional (or zero-memory) quantizer. On the other hand, 
useful bounds are available in the limiting case where the 
block length approaches infinity. What is needed is a 
theory of quantization for finite block lengths of arbitrary 
size. In this note an attempt is made to apply some of the 
appealing features of the one-dimensional theory to the 
study of block quantization. A heuristically derived for- 
mula is found for the asymptotic case of high-quality 
quantization. This formula specializes to known results for 
the one- and two-dimensional cases and for the limiting 
case of infinite block length. 
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II. FORMULATION 

Let X be a k dimensional random vector with joint 
densityp(x)=p(x,,x,; * * ,xk). An N point “block” quan- 
tizer is a function Q(x) which maps x in Rk into one of N 
output vectors or “output points” yi,y,, * * . ,JJ~ each in Rk. 
The quantizer is specified by the values of the output 
points and by a partition of the space Rk into N disjoint 
and exhaustive regions S,, S,, * * * , S,, where Si = Q  - l(n) 
c Rk. Then 

Q(x) =Yiy ifx is in Si 

for i=1,2;-*, N. The term “block” quantizer is used to 
indicate that the quantizer operates on a “block” of k 
random variables, i.e., a k-dimensional random vector. 

The performance of such a quantizer can be measured 
by the distortion: 

D= ;Ellx- Q(x),y 

where I] * ]I denotes the usual I* norm. We assume that 
E IlXll’ is finite. Note that for r= 2, D is the familiar 
mean-square “per-letter” distortion measure and for k = 1 
it is the usual rth absolute moment of the quantizing error. 

We wish to determine a) the minimum distortion D,(N) 
attainable over the set of all N point quantizers and b) the 
minimum distortion D,(He) attainable over the set of all 
quantizers having a fixed output entropy H, where 

N 
He= - ZPilOgPi pi=P{XESi}. 

1 

We consider only the asymptotic case of high quality 
quantization where N is very large in problem a) or He is 
very large in problem b). 

III. FREvIous WORK 

In 1948 W. R. Bennett [I] modeled the one-dimensional 
quantizer using a memoryless monotonically increasing 
nonlinearity E(x) (called the compressor) followed by a 
uniform N point quantizer. This model is completely 
general since any finite partition of the real line into 
intervals can be obtained in this way using a suitable 
continuous compressor curve. He showed that the distor- 
tion could be approximated by the integral 

1 Dz- ~ 
s 

=2 P(X) & 
12N* L, [h(x)]’ 

(1) 

where A(x) = E’(x)/(L, - L,). The result assumes that the 
N -2 finite regions S cover the interval (L,,L,) and that 
L, and L, are appropriately chosen so that the contribu- 

0018-9448/79/07OO-0373$00.75 0 1979 IEEE 



374 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-25, NO. 4, JULY 1979 

tion to the distortion due to the tail or “overload” regions 
can be neglected. The integral is based on some implicit 
regularity conditions on the density p(x) and on the 
assumption that N is very large. Bennett’s formula is a 
convenient analytical tool for optimization studies of one 
dimension quantization. 

Several authors have pursued the problem of m inimiz- 
ing the distortion in one-dimensional quantization. Panter 
and Dite [2] found an expression for the m inimum mean- 
square distortion (r=2) for large N. Lloyd [3] found 
optimality conditions and an algorithmic approach for 
finding the optimum quantizer valid for each N. Smith [4] 
was the first to use Bennett’s formula to find the best 
compressor curve and the m inimum distortion for opti- 
mum quantization for large N. Algazi [5] used the rth 
power distortion measure and showed that for large N the 
m inimum distortion is 

D,(N) = ~(2N)-‘llpl(~,)ll,/(I,,) 

where pl(x,) is the (one-dimensional) density of the ran- 
dom variable X, and 

For the fixed entropy constraint, Gish and Pierce [6] 
solved the one-dimensional problem. Their result can be 
expressed as 

4WQ) = & 2-‘e-‘[HQ-Hh)l (4) 

where H(p,) is the differential entropy of X,, H(p,)= 
- IpI log p,(x,) dx,. Both (2) and (4) are valid only as 
asymptotic results for high quality quantization. 

Extensions to block quantization have been studied by 
Zador [7], Schutzenberger [8], and Elias [9]. Schutzen- 
berger derived an inequality bounding the distortion D for 
given He, namely, 

D > Ke- HQr/k 

where K is an unspecified constant depending on k, r, and 
p(x). Elias defined the quantizer distortion measure D* = 
Zyp( si)[ v( si)r’k where V(Si) is the k-dimensional 
volume of the region Si. He showed that 

D* >N-“kllP(X)llk,k+r (5) 
where Ijp(x)lj,, the La norm of p(x), is defined in (3) 
except that the integration is now k-dimensional. He also 
showed that for N sufficiently large there exists a quan- 
tizer with D* arbitrarily close to this bound. Elias 
assumed the input vector x to be bounded so that each 
region Si has finite volume. Zador, in a lengthy unpub- 
lished manuscript, found for the asymptotic case of high 
quality quantization that 

D,(N)=A(k,r)N-“kllP(X)ll,,(k+.) (6) 
and that 

D2(He) = B(k,r)e-‘/k[HQ-H(p)l (7) 

where H(p) is the differential entropy of the random 
vector X. Zador did not obtain A(k, r) or B(k, r) explicitly, 
but he showed that 

-&Vk-B’kB(k.‘)4kA(k,r)<~(l+/?)F’~8 (8) 

where p = r/k, I’(x) is the gamma function, and V, is the 
volume of a unit sphere in k dimensions. A key feature of 
Zador’s result is that A(k,r) and B(k,r) are independent 
of the densityp(x). Hence these functions can be studied 
in the simpler context of the uniform density on a unit 
cube in k dimensions. For k=2 and r=2, Fejes Toth [lo] 
found the (asymptotically) m inimum distortion having the 
form (6) with the explicit value A(2,2)=5fi /108. 

Recently Gray and Gray [ 1 l] gave a simple derivation 
of the one-dimensional results (2) and (4) using BeMett’s 
integral. Here we explore a similar approach but gener- 
alized to the k-dimensional case. 

IV. ADMISSABLEANDOPTIMALPOLYTOPES 

In the one-dimensional case, Bennett’s integral is de- 
rived by separating the description of a quantizer into two 
aspects: a) a uniform quantizer that is optimal for the 
uniform density function and b) the compressor slope 
function which determines how the output points of the 
uniform quantizer must be redistributed to take into 
account the probability density function of the random 
variable to be quantized. Zador’s expression for the 
m inimal distortion also has the striking feature that the 
factor A (k, r) is independent of the probability density of 
the random variable. Since IIp(x)ll, = 1 ifp(x) is unity in a 
bounded region of unit volume and zero elsewhere, it 
follows that A(k,r) is determined by the optimal quantizer 
for a uniform& distributed random variable. These ob- 
servations suggest that Bennett’s integral can be gener- 
alized by first considering the optimum quantizer for a 
uniformly distributed k-dimensional random variable and 
then considering the effect of a nonuniform distribution 
of output points on the distortion of a quantizer. We 
begin by exploring some relevant geometrical features of 
partitions in Rk. 

For every finite (or countably infinite) set of points 
YId29”‘~ N y in Rk a Dirichlet partition is defined with 
each point in Si closer to yi than to any other yj forj#i. 
That is. 

S,={x: Ilx-yill < I/x-yill for eachj#i}. 

An optimal N-point quantizer that m inimizes distortion 
will clearly have a Dirichlet partition. An example of a 
Dirichlet partition in the plane is shown in Fig. 1. In 
general, each bounded Dirichlet region is a polytope 
(bounded by segments of k- 1 dimensional hyperplanes) 
and is convex. For a quantizer an effective partition 
would have the property that the unbounded regions or 
“overload” regions would make a sufficiently small con- 
tribution to the distortion. This is always possible when 
EllXll’< Co. 
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Fig. 1. Dire&let partition for Cambridge, Massachusetts, schools 
(from H. L. Loeb (171). 

The centroid 9 of a convex polytope H in Rk is the value 
of y that minimizes jH]]x-y]]’ dx. For r=2, $ coincides 
with the usual definition for the centroid of a body with 
uniform mass distribution. It should be noted (see Fig. 1) 
that in general the points generating a Dirichlet partition 
are not necessarily the centroids of their respective re- 
gions. For a uniformly distributed random vector x, a 
quantizer will have a Dirichlet partition defined on the 
bounded set in Rk where p(x) is positive. For the quan- 
tizer that minimizes distortion it is clearly necessary that 
each output point will be the centroid of the region in 
which it lies. The two necessary conditions for optimality, 
i.e., that the partition be a Dirichlet partition and that the 
output points be centroids, were noted for k= 1 by Lloyd 
[31* 

A convex polytope H is said to generate a tessellation if 
there exists a partition of Rk whose regions are all con- 
gruent to H. For example in the plane all triangles, 
quadrilaterals, and hexagons generate tessellations. 

We now make the basic conjecture that for N 
sufficiently large the optimal (distortion-minimizing) 
quantizer for a random vector uniformly distributed on 
some convex set S will have a partition whose regions are 
all congruent to some polytope H, with the possible ex- 
ception of regions touching the boundary of S. In other 
words, the optimal partition is essentially a tessellation of 
S. This conjecture plays a key role in the heuristic ap- 
proach which follows. 

We define Hk, the class of admissible polytopes in Rk as 
follows. A convex polytope H in Rk is in Hk if a)H 
generates a tessellation that is a Dirichlet partition with 
respect to the centroids of each region in the partition. 
For example, the equilateral triangle, the rectangle, and 
the regular hexagon are the admissible polygons in H,. 
Fig. 2 illustrates a tessellation of the regular hexagon. 
Now we define the normalized inertia l(H) of a polytope H 
as 

l(H)=JHl,x-fll’dx/[ V(H)]‘+“k 

where 3 is the centroid of H and V(H) is the k-dimen- 
sional volume of H. The normalization has the property 

Fig. 2. Tesselation of regular hexagons. 

that I(aH) = Z(H) for cx > 0 where the polytope aH = {ax : 
x E H). In other words, when the size of H is scaled, its 
normalized inertia remains unchanged. 

We define the coefficient of quantization 

C(k,r) k i ,‘=f, Z(H). 
k 

An optimal polytope H* is an admissible polytope which 
attains the minimum inertia of all admissable polytopes 
with the same volume. Hence 

Z(H*)= kC(k,r). 

By calculating the normalized inertia of each admissible 
polygon, it can be shown that for k=2 and r =2, the 
optimal polytope is the regular hexagon. We conjecture 
that an optimal polytope exists for each k. 

It is a classic isoperimetric result that every convex 
polytope has a greater moment of inertia with respect to 
its centroid than a k-dimensional sphere with the same 
volume. For the unit radius sphere B centered at the 
origin it is known that 

I allxll’ dx= & ‘k 

where V, is the volume of B. Hence we have 

Z(B)= & Vk-r’k 

so that we have the lower bound 

C(k,r) > & Vk-r’k. 

An upper bound on kC(k,r) can be found by calculating 
the normalized inertia for any admissible polytope in Hk. 
One such choice is the k-dimensional cube (centered at 
the origin), which is clearly admissible. The cube has 
normalized inertia k/[(r + 1)2’] so that 

C(k,r) < &2-r. 

Note that this bound is independent of the dimension k. 
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V. HEURISTIC DERIVATION OF THE DISTORTION The summation can be approximated by an integral yield- 
INTEGRAL ing 

Generalizing the concept of “asymptotic fractional den- 
sity of quanta” introduced by Lloyd in a classic paper [3] 

D=N-&(k,r)/ ,;;y;;P dy. (1% 
_ _ 

on one-dimensional quantization, define the output point L ‘- J 

density function of a k-dimensional quantizer as The region of integration is actually the union of all 
bounded regions of the partition but may be taken to be 

if xESi, for i= 1,2; * * ,N. the entire k-dimensional space since the contribution to 
the distortion of the overload regions will be negligible for 

where V( S,) denotes the volume of S,. Note that gJx> = 0 any reasonable quantizer with sufficiently large-i 

if x is in a region of the partition having infinite volume. Equation (18) may be recognized as the k-dimensional 

In the asymptotic situation where N is very large, gN(x) version of Bennett’s formula (1) for one-dimensional 

can be expected to approximate closely a continuous quantization with mean-square distortion. 

density function A(x) having unit volume. Then 
A(x may be taken as the fraction of output points 
located in an incremental volume element AV(x) contain- 
ing x. Thus the volume of the quantizing region Si 
associated with the output point yi is given approximately 
by 

for every bounded region Si. Note that NX(y,) is the 
number of points per unit volume in the neighborhood of 
yi so that its reciprocal (12) is the volume per output point. 

The distortion (1) can be expressed as 

For N large it is reasonable to assume that most of the 
regions Si will be bounded sets, and the “overload” re- 
gions Si will correspond to the tail region of the density 
p(x). Assume the partition has been suitably chosen so 
that the overload distortion is negligible, treat N as the 
number of bounded regions, and for N large make the 
approximation 

with equality attained only when h is proportional to 
p’/(‘+fl). Hence the m inimum value of D, referring to (18), 
is 

D,(N)= C(k,r)N-Pllp(x)ll,,(~+.). (19) 

P(x>mP(Yi)~ for xESi. 
Then we obtain 

This is the desired result. Note that (19) coincides with 
Zador’s result (6) when we take A(k,r) = C(k,r). Further- 
more using (10) we obtain a lower bound for D,(N) that 
coincides with Zador’s lower bound. 

As N becomes large the partition for any bounded region 
should look more and more like the partition for a uni- 
form density, assuming A(x) is smoothly varying. Thus we 
approximate Si by a suitably rotated, translated, and 
scaled optimal polytope H*. Then 

J [lx-yJ’dx=I(H*)[ V(Si)]‘+“k 
& 

(15) 

using (9). We then have 

VI. MINIMIZATION OF THE DISTORTION INTEGRAL 

The distortion integral (18) allows the m inimization of 
the distortion by optimizing the choice of A(x), the 
asymptotic output point density function. No reference is 
needed to the explicit quantizer characteristics (the output 
points and partition regions). 

For problem a), D is to be m inimized over all quan- 
tizers with N fixed. Holder’s inequality gives 

> {I(PX-~)W  +P)Wl(l +P) dy)‘+‘- 
Noting that IX dy = 1, we obtain the result 

A significant property of the optimum quantizer can 
now be demonstrated. Since the optimum point density h 
is proportional to p ‘/(’ +p), we observe that each term in 
the sum (16) reduces to a constant independent of the 
index i. Therefore each region Si of the partition makes an 
equal contribution to the distortion for an optimal quantizer. 
This property was observed by Panter and Dite [2] for 
k= 1 and by Fejes Toth [lo] for k=2. 

In problem b), D is to be m inimized subject to a 
constraint on the quantizer output entropy He. Since 
pi-p(yi) V(Si) for each bounded set Si and for large N, 

(16) He= -zp(u,)& log [ P(Yi)/N’(Yi)] 
I 

and from (12) we obtain 

D=NePC(k,r) 5 P(Yi)[X(Yi)]-‘v(&)* (17) 

= -zP(Yi) lOgP(Yi)Av(Yi)-~P(Y) log &‘v(YtI 

i=l where A V(yi) = l/ NA(y,). As in the derivation of (18), the 
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sums can be approximated by integrals, yielding VII. SPECIAL CASES AND BOUNDS 

He=H(~)-j-~(y)log & du (20) 

where H(p) is the differential entropy of the random 
vector X. Equation (20) reduces for k = 1 to the corre- 
sponding one-dimensional result given by G ish and Pierce 
[6]. From (18) we have 

For k= 1, a finite interval on the real line is the only 
admissible polytope. The interval is therefore the optimal 
polytope for k = I. Calculating its normalized inertia gives 

C(l,r)= ---&2-‘. 

D= C(k,r)je-P’ogtNX(Y)lp(y) dy. 

Now applying Jensen’s inequality we get 

D ) C(k,r)e-+Y) b3 [Nh(Y)l&. 

(21) 

(22) 

For r =2, we have C(l, 2) = l/ 12 and hence our gener- 
alized Bennett integral (18) reduces to the original Bennett 
integral (1). For k = 1, the minimum distortion formula 
(19) coincides with the known result (2) as given by Algazi 
[5]. Also for k = I, our constrained-entropy minimum dis- 

Applying (20) we see that tortion formula (24) reduces to the known result (4) due to 

D > C(k,r)e-P[nQ-H(p)l. (23) 
G ish and Pierce [6]. 

For k = 2 we have already noted that the regular hexa- 
The application of Jensen’s inequality yields an equality gon is the opthd polytope. This yields the coefficient of 
when A(y) is a constant corresponding to a uniform dis- quantization 
tribution of output points. Hence the solution to problem 
b) is C(2,2)=5. 

D,(He) = C(k,r)e-BIHQ--H(p)l. (24) 
36ti 

Note that (24) coincides with Zador’s result (7) when we A theorem by Fejes Toth [12] shows in effect that for a 
take B(k, r) = C(k, r). Furthermore applying the lower uniformly distributed random variable the minimum dis- 
bound (10) to (24) gives a bound for D,(H,) which tortion for each r is obtained by a tessellation of regular 
coincides with Zador’s lower bound (8). It is significant to hexagons. Newman [ 131 independently found a proof of 
observe that for large N the optimal quantizer for a con- this result for r = 2. Their results imply that Zador’s coef- 
strained entropy is very near&, the uniform quantizer. For ficient A(2,2) has the value 5/(36fi). Hence the com- 
k= 1 this was noted by G ish and Pierce [6]. plete solution for nonuniform densities p(x,,x,) is in fact 

As an additional illustration of the use of the function given by’ 
X(x) we give a heuristic derivation of Elias’ result [9]. 
Since D- 

p(si)mP(Yi) Vsi), 

j&N-‘[ j-/d= dx, &I2 

D*m i$lPCYi) v(si)“kv(si)* 
asymptotically as N+oc, when k=2 and r =2. Unknown 
to Newman and Zador, Fejes Toth [lo] had given a com- 
plete proof of this result. Hence our minimum distortion 

Using (11) gives formula reduces to this known result for k = 2 and r = 2. 

D*m $PCYi)[ &Ir/*Av(n)y 

Fejes Toth [lo] noted that the optimal partition for a 
given probability density p(x,, x2) in the plane consists of 
“approximately” regular hexagons with the centroids dis- 

and approximating the sum for N large by an integral tributed with a nonuniform density over the plane. An 
yields example of a hexagonal partition whose centroids are 

distributed nonuniformly in the plane is shown in Fig. 3. 
D*=N-p 

/ 
P(Y) 

[A(Y)] p dy* 
(25) These results for k = 2 help to clarify the role of the output 

point density function A(x) in characterizing a quantizer 

The minimization of this integral as shown above leads to as used in this paper. 

the result that For k > 3, the minimum distortion attainable for a 
quantizer is not known. However we can obtain upper 

(26) 
which is Elias’ lower bound. 

Finally, it should be noted that the formulas (2), (4), (6), 
(7), (18) (19), (24), and (26), which have been written as 
equalities, should more correctly be taken as lower bounds 
on attainable distortion for any finite N. Since the mini- 
mum distortion attainable is nonincreasing as N (or H,) 
increases, the actual distortion can only be greater than 
these asymptotic values for any quantizer with a finite 
number of quantizing regions N. 

bounds on the quantization coefficient C(k, r) as noted in 
Section IV by calculating the normalized inertia for any 
admissible polytope. Any admissible polytope generates a 
tessellation that can be used for the quantization of a 
random vector that is uniformly distributed on a unit 
volume region. Hence neglecting the boundary regions 
when N is large, the normalized inertia I’ of that polytope 
gives the attainable distortion 
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Fig. 3. Hexagonal partition for nonuniform density of points (from 
Fejes Toth [lo]). 

Hence 

A(k,r) G  :I’. 

Therefore any upper bounds we obtain for C(k,r) are in 
fact upper bounds for Zador’s A(k,r). Even though our 
derivation of (24) is not rigorous, these upper bounds are 
rigorously valid. 

For k=3 the admissible polyhedra include the five 
principal parallelohedra: cube, hexagonal prism, rhombic 
dodecahedron, elongated dodecahedron, and the trun- 
cated octahedron. O f these five, the truncated octahedron 
shown in Fig. 4 and specified by the set 

{(x1,x2,x3): I~II+I~21+I~31<~.5,1~11<~,I~21<1,1~gl<l} 
has by direct calculation the smallest normalized inertia 
with 

LJ 19 = - = 0.23563 - - - 
64s 

which gives the upper bound 
C(3,2) =ci 0.0785445 - * * 

which is surprisingly close to the sphere lower bound 
(0.07697) discussed in Section IV. The truncated oc- 
tahedron is clearly the best parallelohedron and is very 
likely the optimal polyhedron. 

For k =4, the analog of the truncated octahedron is the 
admissible polytope 

{x: (x,(+(x2(+[x~[+[x~~~2;(xi(< I,i= 1,2,3,4} 
which by a crude Monte Carlo integration gives the 
bound 

Fig. 4. Truncated octahedron imbedded in cube of side length 2, 
corresponding to analytical description given in text. 

TABLE I 
VALUES AND Bows mt QUANITZATION COEFFICIE~ C(k, 2) 

SPHERE POLYTOPE CUBE ZADOR 
LOWER ACTUAL UPPER UPPER UPPER 

K BOUND VALUE BOUND BOUND BOUND 

i! 

I .08333 

2 .07958 

1 .07697 

1 .07503 

5 .07352 

100 0574 

.08333(a) 

.08019(b) 

.07854k) 

.0766(d) 

.0779(e) 

.0766(f) 

.08333 .s 

.08333 ,159 

,083)) .I157 

.08333 .09974 

.08333 .09133 

.08333 I .05789 

(a) interval 

(b) regular hexagon 
Cc) truncated octahedron 
(d) four dimensional analog of (c) 

(e) cross product of truncated octahedron wlh an interval 

(f) cross product of 25 type (d) polyto~es 

One technique for obtaining upper bounds is to select 
admissible polytopes in a higher dimensional space by 
forming “cross-products” or prisms using lower dimen- 
sional polytopes. For example, the cube in k-space is 
simply the kth cross-product of the interval, the hexagonal 
prism in k=3 is the cross product of the regular hexagon 
(k = 2) with the interval (k = I), and the cross product of 
the regular hexagon with the truncated octahedron gives 
an admissible polytope for k = 5. For such cross-product 
polytopes the normalized moment of inertia when r = 2 is 
trivially obtained by summing the normalized moments of 
inertia of each lower dimensional polytope. 

In Table I values of C(k,2) are given when known 
together with the available lower and upper bounds. 

VIII. INFINITEBLOCKLENGTH 

All of the preceding results have been based on a fixed 
(but arbitrary) block length k with 1 <k < cc. The results 
can be compared with the known performance bounds of C(4,2) < 0.0766 - - - . 
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rate distortion theory by examining the limiting case for 
mean-square distortion (r = 2) letting k+cc. Since Zador’s 

OPTIMAL BLOCK 

X 
BLOCK f(X) 

upper and lower bounds coincide asymptotically as k-co, 
,COMPRESSORt  

“;Lycy Q ”(f(Xl) 
EXPANDER O(X) 

=(xl&...,xk) f(x) QUANTIZER f-‘(x) 
b 

=($.& ,..., 2,) 

we use the lower bound to study the limiting behavior of 
D,(N). As noted by Zador, Stirling’s formula gives Vk-p- 
(2re)-‘k as k+co. Zador also conjectured that in general 

O ”(X) 

Fig. 5. Companding model of block quantization. 

II~kWllk~k+2-+e2~ as k+co (27) 
where u is the differential entropy rate of the source 

N= - $I i l&(X) logp,(x) dx 

and a subscript has been added to the joint densityp(n) to 
identify its dimensionality. In the particular case of a 
stationary Gaussian process, Zador showed that (27) 
holds. The result (27) appears to be of some fundamental 
theoretical interest. A proof that it holds for any 
stationary ergodic process is given in the Appendix. 
Without assuming ergodicity, the weaker result 

/mm IIz41k~k+2~e2H 

will now be shown 

(28) 

1% llP/cllk/k+2- - !$? log j-pk(x)e-[*/(“+*)l UP, & 

pkcx) log e- 
LWk+*N t=w,(x) dx 

2 = -- 
k pktx) l”gpk(x) dxv 

using Jensen’s inequality. Thus 

llpkll k/k+r > e2H@k)‘k 

from which (28) follows. 

(29) 

Now using (19) and the lower bound (10) on C(k, r) 
gives the result for very large block length k that 

D > 1 e--2wm 
27re (30) 

where R = (log N)/ k is the rate or average number of nats 
per component of X needed to identify (or transmit) the 
quantizer output approximation Q(x). Inverting (30) gives 
a more familiar result 

R >K- i log (2lrel)), (31) 

which is the generalized Shannon lower bound on the 
rate-distortion function (see Berger [ 141). Note that (3 1) as 
derived here is only valid for the asymptotic case of small 
distortion (corresponding to large N). 

density function X(x) is then the slope of the mapping 
E(x). For block quantization we have introduced the 
concept of a point density function and derived a gener- 
alization of Bennett’s integral without any reference to a 
mapping. To complete the connection with the one-di- 
mensional case we can define a continuously differentia- 
ble and invertible mapping f which maps a point x in Rk 
into another point f(x) in Rk. Then a family of k dimen- 
sional quantizers can be modeled as shown in Fig. 5 as the 
cascade of such a mapping with an optimal N-point 
uniform quantizer, let us say on the unit cube in Rk 
followed by the inverse mapping f-l. The overall quan- 
tizer is described by 

Q(x) =f-’ o Qu of 

where Q ,(x) denotes the uniform quantizer. The point 
density function for the overall quantizer is then given by 
the Jacobian determinant off. The Dirichlet partition for 
the uniform quantizer with regions Si, will induce a new 
partition for the overall quantizer with regions S,? = 
f-‘(S,). In general the new partition will not be a Dirich- 
let partition. 

The question then arises, for a given probability density 
p(x), does there exist a mapping f(x) which makes Q(x) 
the optimum quantizer? In order to preserve the Dirichlet 
property it is necessary that the mapping be conformal 
since the line joining the centroids of two adjacent regions 
in a Dirichlet partition must always be perpendicular to 
the hyperplane separating the two regions. For k =2, 
Heppes and Szusz [I51 have noted, in effect, that a neces- 
sary and sufficient condition for the existence of f(x) is 
that the logarithm of the point density function be a 
harmonic function, i.e., that log X(x) satisfy Laplace’s 
equation. Since for the optimum quantizer we have shown 
that X must be proportional to a power of p(x), it follows 
that the condition is equivalent to having logp(x) satisfy 
Laplace’s equation. This condition eliminates the joint 
normal density as well as any other density whose curves 
of constant density close. Hence there appears to be a 
fundamental limitation to the possibility of generalizing 
Bennett’s companding approach to the multidimensional 
case. 

IX. COMPANDING REVISITED X. CONCLUDING REMARKS 

For k = 1, Bennett introduced the “companding” model In this paper we have shown that the point density 
of a quantizer as a monotonically increasing nonlinear function of a quantizer, first conceptualized by Lloyd, can 
mapping E(x) the compressor, followed by a uniform be generalized to the multidimensional case to provide a 
quantizer, and by the inverse mapping, E - ‘. Lloyd’s point fruitful and intuitively satisfying way to develop the the- 
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ory of optimal quantization for random vectors. With it 
we have heuristically generalized the classic integral of 
Bennett for the distortion of a quantizer which we hope 
will be useful for future studies of block quantization. In 
deriving the results of Zador, albeit heuristically, we have 
gone further toward a constructive theory of optimal 
quantization by introducing some of the salient geometri- 
cal features of the partition of space defined by a quan- 
tizer. Finally, we have pointed out the possibilities and 
limitations of the companding approach to modeling a 
quantizer for random vectors, an approach that has been 
of great practical importance in the one-dimensional case. 

f’pk + I(& u), Pk =Pk(u)? PI =Pd”h nen 

ss 
j -@+Ws du du a 

sS[ 
hir/(k+r)]k/S[ ,@(‘+r)]‘/f 

. [p;/(k+r)p;/U+r)]r/’ du du 

Vj py(k+r)p;/U+r) du du 1 r/s 
&](k+r)‘s[ jp;,(‘+r) &,](‘+r)‘s. 
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7 log {Eeakzk} <Klog Il~~(x~)ll~,(l+~~)< ~0 (A.41 

which holds, in particular, for r = r,. Given d, with 0 <d <r, for 
sufficiently large k, 

kro d<-. 
k+ r. 

Hence 

APPENDIX'  

log EedZk <log Ee[kro/(k+ ro)]Z,, 

so that (A.4) implies (A.2), completing the proof of the theorem. 
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