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Static Nonlinearities

Universal Approximators and System Identification

Problem 2.1

Generate a sequence x[n] of 500 samples, spaced uniformly in the interval [−1, 1]. You can
use linspace to generate this sequence. Using any one of the nonlinearities nl1.m, nl2.m,
and nl3.m, generate the corresponding output sequence y[n]. Plotting y[n] as a function of
x[n] allows to visualize the nonlinear mapping involved. Use rbf.m to identify (approximate)
this nonlinearity using Radial Basis Functions (RBF). The quality of the approximation can
be assessed using

Q2 = 10 log10

∑
n |yorig[n]− yreconst[n]|2∑

n |yorig[n]|2

(a) Select 4 centers uniformly spaced between −1 and 1. Set the width of RBFs to 0.1.
Compute the corresponding Q2-value. Try to vary the widths and centers of the RBFs. How
does this affect the performance? Find parameter values that ensure the best performance
with respect to Q2 using 4 RBF functions.

(b) Once the optimal parameters are found, increase the number of centers to 9, 15, 25, 50,
and 100. Compute the corresponding Q2-values. How does the number of centers affect the
performance? What about the kernel conditioning if

1. the number of the centers grows and the width of the RBFs is kept constant?

2. the width of the kernels grows, while the number of RBFs is fixed?

Problem 2.2

The function nl4.m implements a quantizer with quantization steps ∆ = 0.5. Generate an
input signal x[n] limited to the interval [−1, 1] and perform the following tasks:

(a) Using the provided rbf.m function, find the parameters (i.e., centers and widths of the
RBFs) that ensure an approximation quality of Q2 ≤ −20dB.

(b) Perform the same approximation as in (a) using sigmoid.m and fourier.m. How many
centers do you need in this case to achieve the same performance?

(c) What is the best kernel function for the given nonlinearity, what is the worst? Find an
RBF that would be suitable for this task. Explain your answers.
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Figure 1: ’Squares’ vs. ’Circles’

Problem 2.3

Consider two data sets – circles and squares, shown in Fig.1.

(a) Using RBFs, find the analytical expression for the function f(·) that classifies the points
belonging to the same class as follows:

f(’squares’) = a

f(’circles’) = −a
(1)

or, more formally,

f(x) =

{
a if x ∈

{
(−2,−1), (2, 1)

}

−a if x = (0, 0)
(2)

were a is an arbitrary nonzero constant. Explain your choice of the RBF parameters.

(b) Using Matlab’s randn function, generate normally distributed random samples for each of
the two classes, centered around (0, 0) for ’circles’, and around (−2,−1) and (2, 1) for ’squares’,
respectively. Keep the variance of the generated samples low enough to avoid overlapping. Use
the generated samples to check if the function f(·) can correctly predict (classify) the class of
the data points.

Problem 2.4

The provided file amplifier.mat contains input/output values (x[n] and y[n], resp.) for
an amplifier system. Prior knowledge suggests that the amplifier is a static nonlinearity. Note
that there is additive noise η[n] (zero-mean); thus perfect approximation is not desired.

(a) Have a look at the nonlinearity

y[n] ≈ A (x[n]) (3)

i.e., plot y[n] as a function of x[n]. Also calculate the Q2-value of y[n] based on x[n] (x[n] is
the “original” signal).

(b) Fit a polynomial in the least-squares sense to the function A(x[n]). Remember that you
do not want to model the noise, but only the hidden amplifier behaviour. Choose a suitable
order for your polynomial! Hint: Have a look at the functions polyfit and polyval!

(c) Now model the inverse system Â−1 using a polynomial approximation and implement the
post-distorter system shown in Fig. 2. If the linearization works, what do you expect at the
output z[n]?
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Figure 2: Amplifier with post-distorter.

(d) Create input/output plots for polynomial orders 0 through 4 and calculate the correspond-
ing Q2-values. Plot y[n] and z[n] over x[n] and also add a 45° line for each polynomial order.
Based on the Q2-values, which order would you choose?

Harmonic Analysis of Static Nonlinearities

Problem 2.5

For the given input and output of a nonlinear system:

x[n] = cos(θn) = 0.5(ejθn + e−jθn)

y[n] = f(x[n])

(a) compute the harmonic distortions (frequencies) when f(x[n]) = 1− e−x[n].

(b) Plot the nonlinearity f(x[n]) for the range of input values x[n] ∈ [−2.5, 2.5] overlaid with
its third order Taylor expansion around zero.

Problem 2.6

(a) Compute the harmonic distortions for the following nonlinear system

y[n] = 1− x[n] + 3x[n]2 − x[n]4

when the input signal is x[n] = cos(θn). Support the obtained analytical results with the
corresponding Matlab simulations. Hint: Use Chebyshev polynomials to obtain the solution.
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Problem 2.7

Let’s reconsider the amplifier from Problem 2.4. Assuming that higher-order terms can be
neglected, we model the static nonlinear behavior of the amplifier as a third-order polynomial

y(x[n]) ≈ a1x[n] + a2x
2[n] + a3x

3[n] (4)

Let the input signal be x[n] = A cos (θn). The nonlinearity of the amplifier leads to harmonic
distortion at the output. A popular figure of merit for characterizing the linearity of amplifiers
is the Third-order Intercept point IP3. For its definition, we look at the amplitude of the
fundamental frequency component at the output. It contains first-order as well as third-order
terms, i.e. A and A3. The IP3 is defined as the input amplitude A for which these first- and
third-order contributions to the fundamental frequency are equal.

(a) By plugging x[n] in (4), derive a general formula for IP3 in terms of the polynomial
coefficients ai.

(b) Now calculate the IP3 for our amplifier. Assume that it is represented as the continuous
function y(x) = asinh(x). Therefore, calculate a third-order Taylor approximation of the
amplifier to find the ai, using

f(x) =
∞∑

k=0

1

k!

dkf(c)

dxk
(x− c)k =

∞∑

k=0

ak(x− c)k ≈
K∑

k=0

ak(x− c)k.

around the expansion center c = 0.75. Support your result by a Matlab simulation, i.e., plot
the linear and third-order system response (only for the fundamental frequency!) and look at
the intersection point. What is the meaning of IP3? Also describe the influence of the choice of
the expansion center c on the result! Hint: The identity asinh(x) = ln (x+

√
x2 + 1) might

be useful.

Statistical Analysis of Static Nonlinearities

Problem 2.8

Consider an exponentially distributed random variable X

fX(x) = λ exp(−λx), x ∈ X

(a) Find the corresponding characteristic function Φ(ju).

(b) Obtain the expression for moments and cumulants of X .

Problem 2.9

(a) For X ∼ N (0, σ2), and Y = aX2 + b, find mean µy, variance σy, and PDF fY (y).

(b) Let X1 ∼ N (0, σ2) and X2 ∼ N (0, σ2) be two independent random variables (i.i.d.), and
let Y = X2

1 +X2
2 . Find the PDF fY (y) of the random variable Y .
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Problem 2.10

Consider two zero-mean, circular symmetric, complex gaussian stochastic processes x[n] =
a[n] + jb[n] and y[n] = c[n] + jd[n], where a[n], b[n], c[n], and d[n] are jointly independent and
∼ N (0, σ2). Find the cumulants of the power level

(a) z[n] = |x[n]|2 + |y[n]|2.
(b) z[n] =

∑L

l=1 |x[l]|2. All samples of x[n] are i.i.d. ∼ N (0, σ2).

Problem 2.11

(a) A random variableX is known to be zero mean, with central moments µr(X) and cumulants
cr(X). Show that c3(X) = µ3(X) and c4(X) = µ4(X)− 3µ2

2(X)

(b) Show that the odd-order moments of a zero-mean random variable X with a symmetric
PDF, i.e. fX(x) = fX(−x), are zero.

5


