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ABSTRACT
Recognizing speech under noisy condition is an ill-posed
problem. The CHiME 3 challenge targets robust speech
recognition in realistic environments such as street, bus, caf-
fee and pedestrian areas. We study variants of beamformers
used for pre-processing multi-channel speech recordings. In
particular, we investigate three variants of generalized side-
lobe canceller (GSC) beamformers, i.e. GSC with sparse
blocking matrix (BM), GSC with adaptive BM (ABM),
and GSC with minimum variance distortionless response
(MVDR) and ABM. Furthermore, we apply several post-
filters to further enhance the speech signal. We introduce
MaxPower postfilters and deep neural postfilters (DPFs).
DPFs outperformed our baseline systems significantly when
measuring the overall perceptual score (OPS) and the per-
ceptual evaluation of speech quality (PESQ). In particular
DPFs achieved an average relative improvement of 17.54%
OPS points and 18.28% in PESQ, when compared to the
CHiME 3 baseline. DPFs also achieved the best WER when
combined with an ASR engine on simulated development and
evaluation data, i.e. 8.98% and 10.82% WER. The proposed
MaxPower beamformer achieved the best overall WER on
CHiME 3 real development and evaluation data, i.e. 14.23%
and 22.12%, respectively.

Index Terms— multi-channel speech processing, deep
postfilter, automatic speech recognition

1. INTRODUCTION

Background noise is the primary source of performance
degradation in speech recognition systems. While the capa-
bilities of single-channel speech pre-processing are limited,
multi-channel systems exploit the spatial information of the
sound field and usually achieve better speech recognition
results. Adaptive beamforming is a widely used technique
for multi-channel pre-processing of speech as alternative to
blind source separation approaches. For a sufficient amount
of noise reduction, beamformers are generally used in con-
junction with a postfilter.

The aim of the 3rd CHiME challenge is to develop a multi-
channel speech recognition system [1], where we encounter
multi-channel recordings of a speaker located in the near-
field, embedded in mostly far-field noise. The setup covers
different speakers, noise environments, and real-world prob-
lems like microphone failure, clipping, and other recording
glitches.

In this paper, we present a multi-channel speech enhance-
ment system which tries to cope with these conditions: First,
we detect recording glitches using the prediction error of an
auto-regressive model. Then, we estimate the position of the
speaker relative to the microphone array using our direction-
dependent signal-to-noise ratio (DD-SNR) algorithm [2],
which also provides a sufficiently accurate voice activity
detection (VAD). The speaker position is used to obtain a
steering vector for a generalized sidelobe canceller (GSC)
beamformer, which we implemented in three different vari-
ants. We also present two novelties here: Firstly we introduce
a MaxPower postfilter (PF), leading to the best speech recog-
nition result on CHiME 3 real data. Secondly we present deep
neural PFs – deep neural networks attached to beamformers,
improving the overall perceptual quality (OPS) of the target
speech significantly and also outperforming baseline systems
on simulated data. This front-end, i.e. the three beamformer
variants and different PFs, are empirically evaluated using the
PESQ and the OPS measures [3].

In the back-end, we use two speech recognition systems
based on the Kaldi toolkit [4]. The first is a GMM sys-
tem which makes extensive use of feature transformations
as this was shown to provide good results for distant talk
speech recognition [5]. The second is a DNN system that
employs pre-training with restricted Boltzmann machines,
cross entropy training and state-level minimum Bayes risk
training [1]. Our best model, i.e. MaxPower PF with a GMM
backend, reduces word error rate (WER) from 37.61% for
the baseline enhancement system to 22.12% (41% relative
improvement) on the real evaluation set.

The outline of the paper is as follows: In Section 2 we in-
troduce the architecture of the proposed system. Section 3 de-



tails the multi-channel speech processing approaches includ-
ing the proposed beamformers. PFs are introduced in Sec-
tion 4 while the PESQ and PEASS scores of the front-end are
summarized in Section 6.1. The ASR system is presented in
Section 5 and the results are discussed in Section 6.2. Sec-
tion 7 concludes the paper.

2. SYSTEM OVERVIEW
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Ŝ

N̂

Ŷ

Fig. 1. System overview.

Figure 1 shows the setup of the components of the pro-
posed ASR system. Speech estimate Ŝ, the noise estimate
N̂ and the beamformer output Ŷ are fed into a postfilter pre-
dicting an enhanced speech estimate S̃. After feature extrac-
tion the signal is fed into the ASR. Next, Language model
re-scoring is applied and then the final word error rate (WER)
is calculated.

3. MULTI-CHANNEL SPEECH PROCESSING

The input signal vector X of the 6 microphone channels is
written as

X(k, l) = A(k, l)S(k, l) + N(k, l), (1)

where S is the speech signal, N is the noise part of the 6-
channel input signal in frequency-domain, k and l denote
the frequency bin and time frame, respectively, and A(k, l)
denotes the acoustic transfer function (ATF) from the true
speaker position to each microphone. In this challenge, ad-
ditional information is supplied by the noise context, a short
section of noise-only signal before each utterance. The noise
context for each utterance is referenced in annotations pro-
vided by the challenge organizers. This allows to estimate the
spatial noise correlation matrix ΦNN , which is given as

ΦNN (k, l) , E{NH(k, l)N(k, l)}, (2)

where E{·} denotes the expectation operation and {·}H the
Hermitian transpose.

We found that the noise context contains speech in some
utterances, which would cause speech cancellation in a beam-
former. We therefore decided to adaptively estimate ΦNN by
using VAD.

3.1. Failed Channel Detection

The above signal model requires signals which strictly ad-
here to the linear time-invariant theory. Clearly, errors such

as recording glitches, amplitude variations, time shifts or to-
tal signal loss must be detected before multi-channel speech
enhancement such as beamforming. In particular, we noticed
that especially channel 4 and 5 exhibit rather complex record-
ing glitches in about 15% of all isolated recordings. To ad-
dress these problems, a mere energy threshold may not suf-
fice. We therefore employed an auto-regressive linear predic-
tive coding (LPC) on each channel c in time-domain [6, 7],
and used the predictor error e(t) as criterion whether a chan-
nel is considered as failed, i.e.

e(t) = xc(t)−
M∑
m=1

xc(t−m)a(m), (3)

where a(m) are LPC coefficients and M = 100. A channel
xc(t) is considered as failed if the power of its predictor error
e(t) lies outside the±10dB corridor around the median of the
energy of the predictor errors of all channels. If a failed chan-
nel is detected this channel is not used for further processing.

3.2. Direction Of Arrival Estimation

For successful beamforming an accurate direction of arrival
(DOA) estimation is required. Therefore, the steered re-
sponse power phase transform (SRP-PHAT) [8] algorithm
has been already provided for this purpose. But it lacks a
proper VAD estimate, which might also be useful for estimat-
ing the spatial noise correlation matrix ΦNN during speech
pauses. For this purpose, we used our DD-SNR algorithm [2],
which provides a direction-dependent a-priori SNR ξτ (k, l)
under the assumption of an ideal, spherical noise sound field,
i.e.

ξτ (k, l) = Tr([ΓXX(k, l)−Aτ (k, l)AH
τ (k, l)]−1

· [ΓNN (k)− ΓXX(k, l)]),
(4)

where the DD-SNR ξ is also used as VAD, τ is the relative
time difference of arrival (TDOA) between all microphone
pairs, Aτ the corresponding ATFs, ΓXX and ΓNN are the
spatial coherence matrices [2] for the multi-channel signals
X and noise-only components N . The interested reader is
referred to [2] for more details.

The optimal TDOA τ also maximizes ξτ . It can be de-
tected for each time frame l by searching over a small set of
possible delays using τOPT (l) = arg max

τ

1
K

∑K
k=0 ξτ (k, l).

We quantize τ into 13 equally spaced segments which is suf-
ficient for each microphone pair and the given aperture.

3.3. Beamforming

After evaluating a wide variety of beamforming and multi-
channel speech enhancement algorithms [9–13], we decided
to use the general sidelobe canceller (GSC) [14]. The main



Fig. 2. Block diagram of the generalized sidelobe canceller.

reasons are its observed empirical performance and robust-
ness for the given problem.
The entire beamformer can be expressed as

W (k, l) = F (k, l)−H(k, l)B(k, l) (5)

using the fixed beamformer (FBF) F , the adaptive interfer-
ence canceler (AIC) H , and the blocking matrix (BM) B. In
particular, we implemented the following three GSC variants
detailed in the following sub-sections. Details can be found
in [2, 15].

3.3.1. GSC with sparse BM

This variant is the standard GSC, as depicted in Figure 2. The
FBF is given as F (k, l) = A(k,l)

AH(k,l)A(k,l)
. The BM is defined

as [16]

B(k, l) =


−A

∗
2(k,l)

A∗
1(k,l) −A

∗
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∗
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...
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 , (6)

with M = 6 channels, and channel 1 as reference micro-
phone. The asterix in (6) denotes the conjugate complex coef-
ficient. We used the channel with the highest signal energy as
reference in our implementations. The AIC H is a non-causal
adaptive filter.

3.3.2. GSC with adaptive Blocking Matrix (ABM)

This variant features an adaptive BM presented in Figure 3.
The columns of the ABM are designed as non-causal adaptive
filters and the coefficients are determined via the normalized
least mean squares (NLMS) approach [17].

3.3.3. GSC with MVDR and ABM

It is possible to estimate the spatial noise correlation matrix
ΦNN during speech pauses using the DD-SNR from Sec-
tion 3.2 as VAD. Hence, the GSC may be replaced with the

Fig. 3. Block diagram of the adaptive blocking matrix.

minimum variance distortionless response (MVDR) solution
[18, 19] given as:

F (k, l) =
Φ−1
NN (k, l)A(k, l)

AH(k, l)Φ−1
NN (k, l)A(k, l)

. (7)

This has already been provided in the baseline enhancement
system, however, the estimate ΦNN may be inaccurate, there-
fore we only replaced the FBF in Figure 2 with the MVDR so-
lution. This allows for additional noise removal by the ABM
and AIC.

4. POSTFILTERING

4.1. MaxPower postfilter

Our first postfilter is based on the GSC with MVDR and
ABM. Similar to [15], the beamformer output Y (k, l) is
back-projected to the microphones using the ATFs A(k, l).
This way, the microphone inputs X can be split into their
speech and noise components Ŝ and N̂ :

Ŝ(k, l) = A(k, l)Y (k, l)

N̂(k, l) = X(k, l)−A(k, l)Y (k, l)
(8)

The final output of this method is chosen to be the maximum
energy of |Ŝ(k, l)|2 for each frequency bin k and time frame
l. As the phases of Ŝ(k, l) do not match, there would be no
reconstruction back into time domain. To circumvent this lim-
itation, each channel in Ŝ(k, l) has been aligned to the geo-
metric origin of the setup.

4.2. Multi-Channel postfilter

As second postfilter we used our parametric multi-channel
Wiener filter (PMWF) proposed in [2]. With the noise PSD
matrix ΦNN being already available, estimating the resid-
ual noise power in the beamformer becomes straightforward.



With the beamforming filter W , the residual noise power in
the beamformer output is given as

ΦYNYN
(k, l) , E{WH(k, l)ΦNN (k, l)W (k, l)}. (9)

Together with the overall output power of the beamformer

ΦY Y (k, l) , E{WH(k, l)ΦXX(k, l)W (k, l)} (10)

the real-valued gain mask G is obtained as

G(k, l) =
ζ(k, l)

1 + ζ(k, l)
, (11)

where ζ(k, l) = ΦY Y (k,l)
ΦYNYN

(k,l)−1 can be identified as the output
SNR. Further smoothing over time may be achieved using a
spectral subtraction algorithm like the mean-square error log-
spectral amplitude estimator [20].

4.3. Deep neural postfilter
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Fig. 4. Variants of deep postfilter models. A neural network
maps the beamformed speech ΦYSYS

, noise ΦYNYN
or esti-

mated gain mask Ĝ to the optimal gain mask G. The first col-
umn shows the different combinations of various beamformer
components (a-d), respectively.

In [21–24] deep neural networks (DNNs) were applied to
single channel source separation, improving the overall qual-
ity of speech in terms of PESQ and OPS scores. In order
to analyze the enhancement capabilities of DNNs for multi-
channel inputs, we introduce deep postfilter models: In par-
ticular, we use DNNs to map beamformed log-spectrogram
outputs to the optimal gain mask G estimated from the close
talking microphone (channel 0). Figure 4 shows variants of
these postfilters using different beamformer components. In
particular, model (a) uses concatenated beamformed speech
log-spectrograms ΦYSYS

and noise log-spectrograms ΦYNYN

Fig. 5. PESQ scores of deep postfilter models (a-f).

as input. ΦYNYN
is estimated as in (9). ΦYSYS

can be caclu-
lated directly as ΦYSYS

(k, l) = ΦY Y (k, l)−ΦYNYN
(k, l). In

case of the models (b-e) ΦY Y , ΦYSYS
, ΦYNYN

, or the esti-
mated gain mask Ĝ were fed into the network. After training,
mask estimates are applied to the output signal of the beam-
former obtaining enhanced speech S̃ and noise estimates.

We trained 3 layer multi-layer perceptrons [25] with rec-
tifier activation functions using a context window of 1, 3, 5
frames and a MSE criteria on a subset of the CHiME 3
database. In particular we selected 400 utterances, 50 val-
idation utterances and 50 test utterances from the simulated
training corpus. Figure 5 and Figure 6 show the PESQ and
OPS scores [3] of the postfilter (PF) models (a-e), respec-
tively. For objective evaluation the estimated speech was
compared to the output of the GSC with MVDR and ABM
(with/without PMWF postfilter) and the baseline system. The
best deep postfilter, i.e. PF variant a (PFa), achieved an OPS
score of 71.97, a validation score of 54.03 and a test OPS of
50.83. It outperforms the beamformed signal GSC-MVDR-
ABM (with/without PMWF postfilter) as well as the provided
CHiME 3 baseline system. Therefore, we further investigate
this approach when applied to ASR.

5. ASR

Both ASR systems employed in this paper are based on the
baseline system provided by the 3rd CHiME challenge [1].
The GMM system uses mel frequency cepstral coefficients
(MFCC) as features which are input to a series of feature-
space transformations. The features are in this order trans-
formed by applying linear discriminant analysis, maximimum
likelihood linear transformation and feature-space maximum
likelihood linear regression. In addition, inter-speaker dif-
ferences are compensated for by doing speaker-adaptive
training. This pipeline proved to be highly competitive in



Fig. 6. OPS scores of deep postfilter models (a-f).

the CHiME 2 challenge [5]. The DNN system employs
40-dimensional filterbank features and is pre-trained using
restricted Boltzmann machines with 6 hidden layers. The ac-
tual training stage of the DNN uses 4 hidden layers and also
does cross entropy training. Finally, sequence discriminative
training is performed using a state-level minimum Bayes risk
criterion.

In the following sections, we describe the changes we
made to the baseline system. These are to be found in the
frontend and in the postprocessing stage.

5.1. Feature extraction

In contrast to the baseline which uses MFCC features, we
additionally employ power-normalised cepstral coefficients
(PNCC) [26]. For these features, we use a Hamming window
with a window duration of 25 ms and a step size of 10 ms.
Parallel to MFCCs, we extract 13 features and collect deltas
and delta-deltas of these.

5.2. Rescoring

The postprocessing step features n-best list language model
rescoring. For this, we collect the 36 best hypotheses for each
utterance and reweight them with a class-based recurrent neu-
ral network language model (RNN-LM) [27]. The RNN-LM
is trained on the official training data only and is configured
to use a class size of 50.

6. RESULTS AND DISCUSSION

The data of the challenge and the recording setup is de-
scribed in detail in [1]. The data is a collection of two sets
of recordings: real data and simulated data. The first are
speech recordings made in noisy environments. The second

are clean recordings mixed with noise that has been recorded
in the same noisy environments. The real recordings were
made using 6 microphones custom-fitted to a tablet hand-
held device. The recordings with this device were conducted
in four different environments: on a bus (BUS), in a café
(CAF), in a pedestriean area (PED), and at a street junction
(STR). For real data, there is an additional channel recorded
with a head-mounted close-talking microphone. This chan-
nel, however, may not be used directly for obtaining ASR
results but is only to be used in training.

6.1. Preprocessing results

To evaluate our three beamformers, we used PESQ and OPS
scores. Evaluation is performed against the close-talking mi-
crophone channel for the real data set, and against the WSJ
corpus for the simulated data set. Tables 1 and 2 show the
scores for our four beamformers, and the baseline enhance-
ment system for comparison. Again the GSC-MVDR with
ABM and deep postfilter (PFa) outperforms the other beam-
formers in terms of OPS and PESQ scores. In particular the
proposed system achieved an average relative improvement
of 17.54% in OPS and 18.28% in PESQ compared to the
baseline enhancement system.

set train dev eval
Baseline enhancement simu 2.00 1.64 1.72
system real 1.59 1.42 1.50
GSC with sparse BM, simu 2.15 1.73 1.81
and PMWF real 1.51 1.37 1.35
GSC with ABM, simu 1.53 1.49 1.52
and PMWF real 1.36 1.30 1.36
GSC with MVDR simu 2.05 1.60 1.73
and ABM real 1.60 1.45 1.73
GSC with MVDR simu 2.55 2.17 2.28
and ABM, and PFa real 1.73 1.56 1.56
GSC with MVDR simu 1.98 1.69 1.63
and ABM, and MaxPower PF real 1.51 1.39 1.44

Table 1. PESQ scores for our beamformers with PFs and the
baseline.

set train dev eval
Baseline enhancement simu 54.80 44.22 47.31
system real 44.66 40.98 31.48
GSC with sparse BM, simu 59.64 46.99 46.77
and PMWF real 38.69 33.05 29.04
GSC with ABM, simu 48.61 43.84 43.71
and PMWF real 43.16 42.81 38.02
GSC with MVDR simu 52.4 45.87 47.18
and ABM real 48.26 45.87 37.93
GSC with MVDR simu 63.94 53.83 54.53
and ABM, and PFa real 48.69 46.54 37.72
GSC with MVDR simu 56.08 44.82 44.48
and ABM, and MaxPower PF real 47.18 44.90 36.96

Table 2. OPS scores for our beamformers with PFs and the
baseline.



6.2. ASR results

Table 3 shows ASR results for the preprocessing methods pre-
sented in this paper. MaxPower outperforms all other pro-
posed methods on the real development data and the real eval-
uation data (14.53% WER and 22.14% WER, respectively),
whereas PFa achieved the best ASR scores on simulated data,
i.e. 8.98% and 10.82% on development and evaluation, re-
spectively. When comparing MFCCs and PNCCs , on aver-
age, PNCCs lead to an improvement of 6.04% WER on the
real evaluation set. Improvements vary, however, depend-
ing on noise environment and preprocessing. After language
model rescoring, the scores for the real development set and
the real evaluation set descrease slightly to 14.23% WER and
22.12% WER, respectively (see Table 4).

Due to time constraints, our results for the DNN-based
ASR system are limited to MaxPower which achieves best
results among GMM-based systems. While considerable
improvements are gained for the system using MFCCs
(−3.02% WER on real evaluation set), DNNs lead to in-
creased WER for the system using PNCCs (+2.03% WER
on real evaluation set).

development evaluation
features real simu real simu

Baseline MFCC 20.38 9.72 37.61 11.10
GSC sparse BM MFCC 26.14 10.39 44.01 12.75
GSC ABM MFCC 15.66 20.15 36.39 79.05
+ MVDR MFCC 16.78 10.16 27.45 11.47

+ PFa MFCC 17.93 8.98 27.72 10.82
+ MaxPower MFCC 15.70 10.77 25.22 14.86

+ DNN FBANK 14.54 9.52 22.20 15.67
Baseline PNCC 18.99 11.14 31.57 12.15
GSC sparse BM PNCC 22.32 11.17 36.98 13.87
GSC ABM PNCC 15.60 21.96 34.02 77.47
+ MVDR PNCC 16.34 11.01 24.55 12.69

+ PFa PNCC 16.77 10.64 25.58 12.37
+ MaxPower PNCC 14.53 12.05 22.14 15.08

+ DNN FBANK 15.79 10.42 24.17 16.72

Table 3. ASR results for our beamformers and the baseline
enhancement system.

development evaluation
environment real simulated real simulated
BUS 16.17 10.52 29.00 12.46
CAF 13.78 13.97 24.04 15.61
PED 11.73 9.53 19.75 14.81
STR 15.26 13.38 15.69 16.64
AVG 14.23 11.85 22.12 14.88

Table 4. Detailed results for single best system, MaxPower
using PNCC features and RNN language model rescoring.

7. CONCLUSION

We presented a comparison of different beamformers and
postfilters applied to the CHiME 3 speech database. We
studied three variants of GSC beamformers, i.e. GSC with
sparse blocking matrix (BM), GSC with adaptive BM (ABM),
and GSC with minimum variance distortionless response
(MVDR) and ABM. In addition we investigated three postfil-
ters (PF), a MaxPower PF, a parametric multi-channel Wiener
filter, and a deep neural PF. The proposed ASR systens use
either MFCC or PNCC features calculated from the the pre-
processed signals which are fed into GMM or DNN-based
systems. Finally n-best list re-scoring, using a recurrent neu-
ral network (RNN) language model, was applied.

We evaluated the overall perceptual score (OPS), and per-
ceptual evaluation of speech quality (PESQ) of the proposed
beamformers and postfilters. Deep neural postfilters using
an GSC-MVDR-ABM beamformer outperformed other BF
systems significantly, achieving an average relative improve-
ment of 17.54% in OPS and 18.28% in PESQ compared to
the baseline system. However, improvements in OPS were
not reflected in the ASR performance on the real data set, al-
though the best scores were achieved on the simulated data.
The GSC-MVDR-ABM beamformer followed by the Max-
Power postfilter and GMM ASR achieved the best WER on
real data. This configuration obtained a 22.14% WER and a
22.12% WER on the real evaluation set, with or without re-
scoring, respectively.
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