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Tracking of Multiple Targets Using Online
Learning for Reference Model Adaptation
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Abstract—Recently, much work has been done in multiple ob-4
ject tracking on the one hand and on reference model adaptation5
for a single-object tracker on the other side. In this paper, we do6
both tracking of multiple objects (faces of people) in a meeting7
scenario and online learning to incrementally update the models8
of the tracked objects to account for appearance changes during9
tracking. Additionally, we automatically initialize and terminate10
tracking of individual objects based on low-level features, i.e., face11
color, face size, and object movement. Many methods unlike our12
approach assume that the target region has been initialized by13
hand in the first frame. For tracking, a particle filter is incor-14
porated to propagate sample distributions over time. We discuss15
the close relationship between our implemented tracker based16
on particle filters and genetic algorithms. Numerous experiments17
on meeting data demonstrate the capabilities of our tracking18
approach. Additionally, we provide an empirical verification of the19
reference model learning during tracking of indoor and outdoor20
scenes which supports a more robust tracking. Therefore, we21
report the average of the standard deviation of the trajectories22
over numerous tracking runs depending on the learning rate.23

Index Terms—Genetic algorithms (GAs), multiple target track-24
ing, particle filter, reference model learning, visual tracking.25

I. INTRODUCTION26

V ISUAL tracking of multiple objects is concerned with27

maintaining the correct identity and location of a variable28

number of objects over time irrespective of occlusions and29

visual alterations. Lim et al. [1] differentiate between intrinsic30

and extrinsic appearance variability including pose variation,31

shape deformation of the object and illumination change, cam-32

era movement, occlusions, respectively.33

In the past few years, particle filters have become the method34

of choice for tracking. Isard and Blake [2] introduced particle35

filtering (condensation algorithm). Many different sampling36

schemes have been suggested in the meantime. An overview37

about sampling schemes of particle filters and the relation to38

Kalman filters is provided in [3].39

Recently, the main emphasis is on simultaneously tracking40

multiple objects and on online learning to adapt the reference41

models to the appearance changes, e.g., pose variation, illumi-42

nation change. Lim et al. [1] introduce a single-object tracker,43

where the target representation—a low-dimensional eigenspace44

representation—is incrementally updated to model the appear-45
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ance variability. They assume, like most tracking algorithms, 46

that the target region is initialized by hand in the first frame. 47

Jepson et al. [4] use a Gaussian mixture model which is adapted 48

using an online expectation maximization (EM) algorithm to 49

account for appearance changes. Their WSL tracker uses a 50

wavelet-based object model which is useful for tracking objects 51

where regions of the objects (i.e., faces) are stable while other 52

regions vary, e.g., mouth. McKenna et al. [5] employ Gaussian 53

mixtures of the color distributions of the objects as adaptive 54

model. In [6], simple color histograms are used to represent the 55

objects (similar as in [7]). However, they introduce a simple 56

update of the histograms to overcome the appearance changes 57

of the object. All the aforementioned articles are focused on 58

tracking a singe object. For tracking multiple objects, most 59

algorithms belong to one of the following three categories: 60

1) Multiple instances of a single-object tracker are used [8]. 61

2) All objects of interest are included in the state space [9]. 62

A fixed number of objects is assumed. Varying number of 63

objects result in a dynamic change of the dimension of the 64

state space. 3) Most recently, the framework of particle filters is 65

extended to capture multiple targets using a mixture model [10]. 66

This mixture particle filter—where each component models an 67

individual object—enables interaction between the components 68

by the importance weights. In [11], this approach is extended 69

by the Adaboost algorithm to learn the models of the targets. 70

The information from Adaboost enables detection of objects 71

entering the scene automatically. The mixture particle filter is 72

further extended in [12] to handle mutual occlusions. They 73

introduce a rectification technique to compensate for camera 74

motions, a global nearest neighbor data association method 75

to correctly identify object detections with existing tracks, 76

and a mean-shift algorithm which accounts for more stable 77

trajectories for reliable motion prediction. 78

In this paper, we do both tracking of multiple persons in 79

a meeting scenario and online adaptation of the models to 80

account for appearance changes during tracking. The tracking 81

is based on low-level features such as skin color, object motion, 82

and object size. Based on these features, automatic initialization 83

and termination of objects are performed. The aim is to use as 84

little prior knowledge as possible. For tracking, a particle filter 85

is incorporated to propagate sample distributions over time. Our 86

implementation is related to the dual estimation problem [13], 87

where both the states of multiple objects and the parameters 88

of the reference models are simultaneously estimated given the 89

observations. At every time step, the particle filter estimates the 90

states using the observation likelihood of the current reference 91

models while the online learning of the reference models is 92

based on the current state estimates. Additionally, we discuss 93
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the similarity between our implemented tracker based on parti-94

cle filters and genetic algorithms (GAs). We want to emphasize95

this close connection since approaches what have indepen-96

dently been developed in one community might turn out to be97

very useful for the other community and vice versa. Numerous98

experiments on meeting data demonstrate the capabilities of our99

tracking approach. Additionally, we empirically show that the100

adaptation of the reference model during tracking of a indoor101

and outdoor scenes results in a more robust tracking. For this,102

we report the average of the standard deviation of the trajecto-103

ries over numerous independent tracking runs depending on the104

learning rate.105

The proposed approach differs from previous methods in106

several aspects. Recently, much work has been done in multiple107

object tracking on the one hand side and on reference model108

adaptation for a single-object tracker on the other side. In this109

paper, we do both tracking of multiple objects and online learn-110

ing to incrementally update the representation of the tracked ob-111

jects to model appearance changes. We use the Jensen–Shannon112

(JS) divergence [14] to measure the similarity between the113

tracked object and its reference model. Additionally, we discuss114

its advantages compared to the Kullback–Leibler divergence115

[15] and the Bhattacharyya similarity coefficient [16]. We auto-116

matically initialize and terminate tracking of individual objects117

based on low-level features, i.e., face color, face size, and object118

movement. Many methods unlike our approach assume that the119

target region has been initialized in the first frame.120

This paper is organized as follows. Section II introduces121

the particle filter for multiple object tracking, the state-space122

dynamics, the observation model, automatic initialization and123

termination of objects, and the online learning of the mod-124

els for the tracked objects. Section II-G summarizes the im-125

plemented tracker on the basis of pseudocode. Section III126

sketches the relationship to GA. The tracking results on a127

meeting scenario and for indoor/outdoor scenes are presented in128

Section IV. Additionally, we provide empirical verification of129

the reference model learning in this section. Section V con-130

cludes this paper.131

II. TRACKING USING PARTICLE FILTERS132

In many applications the states of a dynamic system have133

to be estimated from a time series of noisy observations. The134

Kalman filter [13], [17] is a linear dynamical system [18] that135

provides a linear time-discrete filter that estimates the states136

online over time once observations become available. This137

filter is recursive in a sense that each current state estimate138

is computed from the previous estimate and the current ob-139

served data. In contrast to linear dynamical systems, the hidden140

Markov model [19] assumes a discrete state space. Recently,141

many extentions of the basic linear dynamical system have142

been proposed [13] to overcome the assumption of the linear-143

Gaussian model used for the observations and state transition,144

e.g., the extended Kalman filter, unscented Kalman filter, or145

the switching state-space model [20]. Another approach for146

filtering is to use sequential Monte Carlo methods which are147

also known as particle filters [21]. They are capable to deal with148

any nonlinearity or distribution.149

A. Particle Filter 150

A particle filter is capable to deal with nonlinear non- 151

Gaussian processes and has become popular for visual tracking. 152

For tracking, the probability distribution that the object is in 153

state xt at time t given the observations y0:t up to time t is of 154

interest. Hence, p(xt|y0:t) has to be constructed starting from 155

the initial distribution p(x0|y0) = p(x0). In Bayesian filtering, 156

this can be formulated as iterative recursive process consisting 157

of the prediction step 158

p(xt|y0:t−1) =
∫

p(xt|xt−1)p(xt−1|y0:t−1)dxt−1 (1)

and of the filtering step 159

p(xt|y0:t) =
p(yt|xt)p(xt|y0:t−1)∫
p(yt|xt)p(xt|y0:t−1)dxt

(2)

where p(xt|xt−1) is the dynamic model describing the state- 160

space evolution which corresponds to the evolution of the 161

tracked object (see Section II-B) and p(yt|xt) is the likelihood 162

of an observation yt given the state xt (see observation model 163

in Section II-C). 164

In particle filters p(xt|y0:t) of the filtering step is ap- 165

proximated by a finite set of weighted samples, i.e., the 166

particles, {xm
t , wm

t }M
m=1, where M is the number of sam- 167

ples. Particles are sampled from a proposal distribution xm
t ∼ 168

q(xt|xt−1,y0:t) (importance sampling) [3]. In each iteration, 169

the importance weights are updated according to 170

wm
t ∝

p (yt|xm
t ) p

(
xm

t |xm
t−1

)
q
(
xm

t |xm
t−1,y0:t

) wm
t−1

M∑
m=1

wm
t = 1. (3)

One simple choice for the proposal distribution is to take the 171

prior density q(xm
t |xm

t−1,y0:t) = p(xm
t |xm

t−1) (bootstrap filter). 172

Hence, the weights are proportional to the likelihood model 173

p(yt|xm
t ) 174

wm
t ∝ p (yt|xm

t ) wm
t−1. (4)

The posterior filtered density p(xt|y1:t) can be approx- 175

imated as 176

p(xt|y1:t) ≈
M∑

m=1

wm
t δ (xt − xm

t ) (5)

where δ(xt − xm
t ) is the Dirac delta function with mass at xm

t . 177

We use resampling to reduce the degeneracy problem [3], 178

[21]. We resample the particles {xm
t }M

m=1 with replacement M 179

times according to their weights wm
t . The resulting particles 180

{xm
t }M

m=1 have uniformly distributed weights wm
t = 1/M . 181

Similar to the sampling importance resampling filter [3], we 182

resample in every time step. This simplifies (4) to wm
t ∝ 183

p(yt|xm
t ) since wm

t−1 = 1/M ∀m. 184

In the meeting scenario, we are interested in tracking the 185

faces of multiple people. We treat the tracking of multiple 186

objects completely independent, i.e., we assign a set of M 187

particles to each tracked object k as {{xm,k
t }M

m=1}K
k=1, where 188

K is the total number of tracked objects which dynamically 189
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Fig. 1. JS divergence and Bhattacharyya similarity coefficient between two distributions estimated from samples. We added noise at a level of 10, 20, and 30 dB
to the distributions.

changes over time. Hence, we use multiple instances of a single-190

object tracker similar to [8].191

B. State-Space Dynamics192

The state sequence evolution {xt; t ∈ N} is assumed to be193

a second-order autoregressive process which is used instead194

of the first-order formalism (p(xt|xt−1)) introduced in the195

previous section. The second-order dynamics can be written as196

first order by extending the state vector at time t with elements197

from the state vector at time t − 1.198

We define the state vector at time t as xt = [xt yt sx
t sy

t ]T.199

The location of the target at t is given as xt, yt, respectively,200

and sx
t , sy

t denote the scale of the tracked region in the x × y201

image space. In our tracking approach, the transition model202

corresponds to203

xm,k
t+1 = xm,k

t + Cvt +
D

2M

M∑
m′=1

(
xm′,k

t − xm′,k
t−1

)
(6)

where vt ∼ N (0, I) is a simple Gaussian random noise model204

and the term 1/2M
∑M

m′=1(x
m′,k
t − xm′,k

t−1 ) captures the linear205

evolution of object k from the particles of the previous time206

step. Factor D models the influence of the linear evolution,207

e.g., D is set to 0.5. The parameters of the random noise208

model are set to C = diag([10 10 0.03 0.03]) with the209

units of [pixel/frame], [pixel/frame], [1/frame], and [1/frame],210

respectively.211

C. Observation Model212

The shape of the tracked region is determined to be an ellipse213

[4] since the tracking is focused on the faces of the individuals.214

We assume that the principal axes of the ellipses are aligned215

with the coordinate axes of the image. Similarly to [7], we use216

the color histograms for modeling the target regions. Therefore,217

we transform the image into the hue-saturation-value (HSV)218

space [22]. For the sake of readability, we abuse the notation219

and write the particle xm,k
t as xt in this section. We build220

an individual histogram for hue (H) hxt

H , saturation (S) hxt

S ,221

and value (V) hxt

V of the elliptic candidate region at xt. The 222

length of the principal axes of the ellipse are Ak
refs

x
t and Bk

refs
y
t , 223

respectively, where Ak
ref and Bk

ref are the length of the ellipse 224

axes of the reference model of object k. 225

The likelihood of the observation model (likelihood model) 226

p(ym,k
t |xm,k

t ) must be large for candidate regions with a his- 227

togram close to the reference histogram. Therefore, we intro- 228

duce the JS divergence [14] to measure the similarity between 229

the normalized candidate and reference histograms, hxt
c and 230

hk
c,ref , c ∈ {H,S, V }, respectively. Since, the JS divergence 231

is defined for probability distributions the histograms are nor- 232

malized, i.e.,
∑

N hxt
c = 1, where N denotes the number of 233

histogram bins. In contrast to the Kullback–Leibler divergence 234

[15], the JS divergence is symmetric and bounded between 0 235

and 1. The JS divergence between the normalized histograms is 236

defined as 237

JSπ

(
hxt

c , hk
c,ref

)
= H

(
π1h

xt
c + π2h

k
c,ref

)
−π1H (hxt

c ) − π2H
(
hk

c,ref

)
(7)

where π1 + π2 = 1, πi ≥ 0 and the function H(·) is the entropy 238

[15]. The JS divergence is computed for the histograms of the 239

H, S, and V space, and the observation likelihood is 240

p
(
ym,k

t |xm,k
t

)
∝exp−λ


 ∑

c∈{H,S,V }
JSπ

(
h
xm,k

t
c , hk

c,ref

)
 (8)

where parameter λ is chosen to be five and the weight πi is 241

uniformly distributed. The number of bins of the histograms is 242

set to N = 50. The JS divergence provides a lower and upper 243

bound to the Bayes error and π1 and π2 can be viewed as 244

a priori probabilities in a classification problem [14]. 245

In contrast to the often used Bhattacharyya similarity coef- 246

ficient

√
1 −

∑
N

√
h
xm,k

t
c hk

c,ref [16], the JS divergence is not 247

so sensitive to local perturbations in the histogram (noise). This 248

is shown in Fig. 1 where we compute the JS divergence and 249

Bhattacharyya similarity coefficient on synthetic data. There- 250

fore, we sample two Gaussian distributions with µ1 = −µ2, 251
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where µ1 varies from 0 to 1.5, and unit variance. Noise is added252

to those distributions at a level of 10, 20, and 30 dB. Plots are253

averaged over 100 independent simulations.254

D. Automatic Initialization of Objects255

If an object enters the frame, a set of M particles and a refer-256

ence histogram for this object have to be initialized. Basically,257

the initialization of objects is automatically performed using the258

following simple low-level features.259

1) Motion: The images are transformed to gray scale IG
xt,yt

.260

The motion feature is determined for each pixel located261

at x, y by the standard deviation over a time window262

Tw as σt
x,y = σ(IG

xt−Tw :t,yt−Tw :t
). Applying an adaptive263

threshold Tmotion = 1/10 maxx,y∈IG σt
x,y pixels with a264

value larger Tmotion belong to regions where movement265

happens. However, maxx,y∈IG σt
x,y has to be sufficiently266

large so that motion exists at all. A binary motion image267

IBmotion
xt,yt

after morphological closing is shown in Fig. 2.268

2) Skin Color: The skin color of the people is mod-269

eled by a Gaussian mixture model [23] in the HSV270

color space. A Gaussian mixture model p(z|Θ) is the271

weighted sum of L > 1 Gaussian components, p(z|Θ) =272 ∑L
l=1 αlN (z|µl,Σl), where z = [zH, zS, zV]T is the 3-D273

color vector of one image pixel, αl corresponds to the274

weight of each component l = 1, . . . , L. These weights275

are constrained to be positive αl ≥ 0 and
∑L

l=1 αl = 1.276

The Gaussian mixture is specified by the set of parameters277

Θ = {αl, µl,Σl}L
l=1. These parameters are determined278

by the EM algorithm [24] from a face database.279

Image pixels z ∈ IHSV
xt,yt

are classified according to their280

likelihood p(z|Θ) using a threshold Tskin. The binary281

map IBskin
xt,yt

filtered with a morphological closing operator282

is presented in Fig. 2.283

3) Object Size: We initialize a new object only for skin-284

colored moving regions with a size larger than TArea.285

Additionally, we do not allow initialization of a new set of286

particles in regions where currently an object is tracked.287

To this end, a binary map I
Bprohibited
xt,yt represents the areas288

where initialization is prohibited. The binary combination289

of all images IB
xt,yt

= IBmotion
xt,yt

∩ IBskin
xt,yt

∩ I
Bprohibited
xt,yt is290

used for extracting regions with an area larger TArea. Tar-291

get objects are initialized for those regions, i.e., the ellipse292

size (Ak
ref , B

k
ref) and the histograms hk

c,ref , c ∈ {H,S, V }293

are determined from the region of the bounding ellipse.294

Fig. 2 shows an example for the initialization of a new object.295

The original image IHSV
xt,yt

is presented in (a). A person entering296

from the right side should be initialized. A second person in297

the middle of the image is already tracked. The binary images298

of the thresholded motion IBmotion
xt,yt

and the skin-colored areas299

IBskin
xt,yt

are shown in (b) and (c), respectively. The reflections at300

the table and the movement of the curtain produce noise in the301

motion image. The color of the table and chairs intersects with302

the skin-color model. To guarantee successful initialization the303

lower part of the image—the region of the chairs and desk—has304

to be excluded. This is reasonable since nobody can enter in305

this area. Also, tracking is performed in the area above the306

Fig. 2. Initialization of a new object. (a) Original image with one ob-
ject already tracked. (b) Binary image of the thresholded motion I

Bmotion
xt,yt .

(c) Binary image of the skin-colored areas I
Bskin
xt,yt . (d) Image with region of

initialized object.

chairs only. Finally, the region of the new initialized object is 307

presented as ellipse in (d). Resizing of the images is performed 308

for computing the features to speed up the initialization of 309

objects. 310

1) Shortcomings: The objects are initialized when they en- 311

ter the image. The reference histogram is taken during this 312

initialization. There are the following shortcomings during 313

initialization. 314

1) The camera is focused on the people sitting at the table 315

and not on people walking behind the chairs. This means 316

that walking persons appear blurred. 317

2) Entering persons are moving relatively fast. This also 318

results in a degraded image quality (blurring). 319

3) During initialization, we normally get the side view of 320

the person’s head. When the person sits at the table the 321

reference histogram is not necessarily a good model for 322

the frontal view. 323

To deal with these shortcomings, we propose online learning 324

to incrementally update the reference models of the tracked 325

objects over time (see Section II-F). We perform this only in 326

cases where no mutual occlusions between the tracked objects 327

are existent. 328

E. Automatic Termination of Objects 329

Termination of particles is performed if the observation 330

likelihood p(ym,k
t |xm,k

t ) at state xm,k
t drops below a predefined 331

threshold TKill (e.g., 0.001), i.e., 332

p
(
ym,k

t |xm,k
t

)
=




0, if p
(
ym,k

t |xm,k
t

)
<TKill

p
(
ym,k

t |xm,k
t

)
, otherwise.

(9)

Particles with zero probability do not survive during resam- 333

pling. If the tracked object leaves the field of view all M 334
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particles of an object k are removed, i.e., p(ym,k
t |xm,k

t ) = 0335

for all particles of object k.336

F. Incremental Learning of Object Models337

To handle the appearance change of the tracked objects over338

time, we use online learning to adapt the reference histograms339

hk
c,ref , c ∈ {H,S, V } (similar to [6]) and ellipse size Ak

ref and340

Bk
ref . Therefore, a learning rate α is introduced, and the model341

parameters for target object k are updated according to342

hk
c,ref =αĥk

c + (1 − α)hk
c,ref , c ∈ {H,S, V } (10)

Ak
ref =αÂk + (1 − α)Ak

ref (11)

Bk
ref =αB̂k + (1 − α)Bk

ref (12)

where ĥk
c denotes the histogram and Âk and B̂k are the prin-343

cipal axes of the bounding ellipse of the nonoccluded (i.e., no344

mutual occlusion between tracked objects) skin-colored region345

of the corresponding tracked object k located at {xm,k
t }M

m=1.346

Again, this region has to be larger than TArea. No update of347

the reference models is performed in the case where occlusion348

between the tracked objects occurs or the skin-colored region349

is not large enough. The latter condition is a simple way to350

ensure that the model update is only conducted for faces.351

This simplistic assumption can be appropriately extended by352

integrating more advanced face models.353

The learning rate α introduces an exponential forgetting354

process, i.e., the contribution of a specific object exponentially355

decreases as it recedes into the past. Currently, the learning rate356

(value between 0 and 1) is fixed (a good value has been selected357

during experiments). However, α could be adapted depending358

on the dynamics of the scene.359

Algorithm 1 Particle Filter Tracking360

Input: IHSV
x0:T ,y0:T

(Color image sequence 0 : T ),361

Skin-color model Θ362

Parameters: M , N , λ, C, D, Tw, Tmotion, Tskin, TArea,363

TKill, α364

Output: {{xm,k
0:T }M

m=1}∀k365

t ← 0366

k ← 0367

while InitObjects do368

k ← k + 1369

Obtain: hk
c,ref : c ∈ {H,S, V }, Ak

ref , Bk
ref , x

k
ref370

xm,k
t+1 ←xk

ref +Cvt ∀m=1, . . . ,M (Generate particles)371

end while372

K ← k373

for t = 1 to T do374

wm,k
t ∝ p(ym,k

t |xm,k
t )375

∀k = 1, . . . ,K ∀m = 1, . . . , M376

while KillObjects do377

k ← Determine object to terminate378

Remove M particles xm,k
t of object k379

Remove reference histogram and ellipse size:380

hk
c,ref : c ∈ {H,S, V }, Ak

ref , B
k
ref381

K ← K − 1382

end while383

Fig. 3. Tracking scene. We track and initialize objects in the red rectangle.

for k = 1 to K do 384

wm,k
t ← wm,k

t /
∑M

m′=1 wm′,k
t ∀m = 1, . . . ,M 385

{xm,k
t }M

m=1 ← Resampling 386

(with replacement): {xm,k
t , wm,k

t }M
m=1 387

xm,k
t+1←xm,k

t +Cvt+(D/2M)
∑M

m′=1(x
m′,k
t −xt−1)m′,k 388

∀m = 1, . . . , M (Apply state-space dynamics) 389

if OnlineUpdate then 390

Determine: ĥk
c : c ∈ {H,S, V }, Âk, B̂k 391

hk
c,ref ← αĥk

c + (1 − α)hk
c,ref c ∈ {H,S, V } 392

Ak
ref ← αÂk + (1 − α)Ak

ref 393

Bk
ref ← αB̂k + (1 − α)Bk

ref 394

end if 395

end for 396

while InitObjects do 397

K ← K + 1 398

Obtain: hK
c,ref : c ∈ {H,S, V }, AK

ref , BK
ref , x

K
ref 399

xm,K
t+1 ← xK

ref + Cvt ∀m = 1, . . . ,M (Generate 400

particles) 401

end while 402

end for 403

G. Implemented Tracker 404

In the following, we sketch our tracking approach for multi- 405

ple objects (see Algorithm 1). The binary variable InitObject 406

denotes that a new object for tracking has been detected. 407

KillObject is set if an object should be terminated. OnlineUp- 408

date indicates that object k located at {xm,k
t }M

m=1 is nonoc- 409

cluded, and the area of the skin-colored region is larger than 410

TArea, i.e., we perform online learning for reference model k. 411

Our implementation is related to the dual estimation problem 412

[13], where both the states of multiple objects xm,k
t and the 413

parameters of the reference models are simultaneously esti- 414

mated given the observations. At every time step, the particle 415

filter estimates the states using the observation likelihood of 416

the current reference models, while the online learning of the 417

reference models is based on the current state estimates. 418

III. RELATIONSHIP TO GAS 419

GAs are optimization algorithms founded upon the principles 420

of natural evolution discovered by Darwin. In nature, individ- 421

uals have to adapt to their environment in order to survive in 422
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Fig. 4. Tracking of people. Frames: 1, 416, 430, 449, 463, 491, 583, 609, 622, 637, 774, 844, 967, 975, 1182, 1400 (the frame number is assigned from left to
right and top to bottom).

a process of further development. An introduction of GAs can423

be found in [25] and [26]. GA are stochastic procedures which424

have been successfully applied in many optimization tasks.425

GA operate on a population of potential solutions applying the426

principle of survival of the fittest individual to produce better427

and better approximations to the solution. At each generation, a428

new set of approximations is created by the process of selecting429

individuals according to their level of fitness in the problem430

domain and assembling them together using operators inspired431

from nature. This leads to the evolution of individuals that are432

better suited to their environment than the parent individuals433

they were created from. GA model the natural processes, such434

as selection, recombination, and mutation. Starting from an435

initial population P (0), the sequence P (0), P (1), . . . , P (t),436

P (t + 1) is called population sequence or evolution. The end of437

an artificial evolution process is reached once the termination438

condition is met, and the result of the optimization task is439

available.440

In this section, we want to point to the close relationship441

between GA and our particle filter for tracking. This analogy442

has been mentioned in [27]. As suggested in Section II, we443

treat the tracking of multiple objects completely independent,444

i.e., we have a set of M particles for each object k. In the GA445

framework, we can relate this to k instantiations of GA, one446

for each tracked object. Hence, each particle xm
t of object k447

represents one individual in the population P (t) which is value448

encoded. The population size is M . A new genetic evolution449

process is started once a new object is initialized for tracking 450

(InitObject). The evolution process of the GA is terminated 451

either at the end of the video (t = T ) or when the set of 452

individuals is not supported by the fitness value (KillObject). 453

The observation likelihood p(ym,k
t |xm,k

t ) denotes the fitness 454

function to evaluate the individuals. However, the scope of GA 455

for tracking is slightly different. GA are generally used to find a 456

set of parameters for a given optimization task, i.e., the aim is to 457

find the individual with the best fitness after the termination of 458

the GA. Whereas, in the tracking case, the focus lies on the evo- 459

lution of the individuals, i.e., the trajectory of the tracked object. 460

The selection operator directs the search toward promising 461

regions in the search space. Roulette Wheel Selection [28] is a 462

widely used selection method which is very similar to sampling 463

with replacement as used in Section II. To each individual, a re- 464

production probability according to wm
t ← wm

t /
∑M

m′=1 wm′
t 465

is assigned. A roulette wheel is constructed with a slot size cor- 466

responding to the individuals reproduction probability. Then, 467

M uniformly distributed random numbers on the interval [0, 1] 468

are drawn and distributed according to their value around the 469

wheel. The slots where they are placed to compose the subse- 470

quent population P (t). The state-space dynamics of the particle 471

filter (see Section II-B) is modeled by the recombination and 472

mutation operator. 473

The framework of the GA for tracking one object k is 474

presented in Algorithm 1. The incremental learning of the 475

reference model is omitted for the sake of brevity. 476
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Fig. 5. Partial occlusions. Frames: 468, 616, 974, 4363 (the frame number is
assigned from left to right and top to bottom).

Algorithm 2 GA Tracking477

Input: IHSV
xt:T ,yt:T

(Color image sequence t : T ),478

Parameters: M , N , λ, C, D, TKill479

Output: {xm
t:T }M

m=1 (set of particle sequences t : T )480

Initialize population P (t) :481

xm
t ← xref + Cvt ∀m = 1, . . . ,M482

while KillObject ∩ t < T (Loop over image sequence) do483

Evaluate individuals:484

wm
t ← p(ym

t |xm
t ) ∀m = 1, . . . ,M485

Selection P (t):486

{xm
t }M

m=1← (Sampling with replacement){xm
t ,wm

t }M
m=1487

Recombination P (t + 1) :488

xm
t+1 ← xm

t + (D/2M)
∑M

m′=1(x
m′
t − xm′

t−1)489

∀m = 1, . . . ,M490

Mutation P (t+1) : xm
t+1←xm

t+1+Cvt ∀m=1, . . . ,M491

t ← t + 1492

end while493

IV. EXPERIMENTS494

We present tracking results on meeting data in Section IV-A495

where we do both tracking of multiple persons and on-496

line adaptation of the reference models during tracking. In497

Section IV-B, we empirically show that the adaptation of the498

reference model during tracking (single object) of an indoor499

and outdoor scene results in a more robust tracking. Finally, in500

Section IV-C, tracking results using reference model adaptation501

for multiple objects of an outdoor scene are presented. For the502

outdoor scenes, we report the average standard deviation of503

the trajectories of independent tracking runs depending on the504

learning rate α.505

A. Meeting Scenario506

The meeting room layout is shown in Fig. 3. The red rec-507

tangle [region of interest (ROI)] in the image marks the frame508

where tracking and initialization of objects are performed. Peo-509

ple may enter and leave on both sides of the image. Currently,510

our tracker initializes a new target even if it enters from the511

Fig. 6. Outdoor tracking. Frames: 7, 11, 12, 13, 14, 20, 42, 63, 80, 107,
136, 146, 158, 165, 192 (the frame number is assigned from left to right and
top to bottom). (a) Original image sequence. (b) Tracking without reference
model adaptation (α = 0). (c) Tracking with online reference model learning
(α = 0.2).

Fig. 7. Averaged standard deviation of the trajectories of 100 tracking runs
depending on the reference model learning rate α.

bottom, e.g., a hand moving from the table into the ROI. The 512

strong reflections at the table, chairs, and the white board cause 513

noise in the motion image. 514

For testing the performance of our tracking approach, ten 515

videos with ∼7000 frames have been used. The resolution is 516

640 × 480 pixels. The meeting room is equipped with a table 517

and three chairs. We have different persons in each video. The 518

people are coming from both sides into the frame moving 519
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Fig. 8. Observation likelihood of outdoor sequence.

Fig. 9. Averaged trajectory with standard deviation in x and y of outdoor
sequence (over ten runs).

to chairs and sit down. After a short discussion, people are520

sequentially leaving the room, are coming back, sit down at521

different chairs and so on. At the beginning, people may already522

sit at the chairs. In this case, we have to automatically initialize523

multiple objects at the very first frame.524

Fig. 4 shows the result of the implemented tracker for one525

video. All the initializations and terminations of objects are526

performed automatically. The appearance of an object changes527

over time. When entering the frame, we get the side view of528

the person’s head. After sitting down at the table, we have a529

frontal view. We account for this by incrementally updating the530

reference histogram during tracking. We perform this only in531

the case where no mutual occlusions with other tracked objects532

are existent. The participants were successfully tracked over533

long image sequences.534

First, the person on the left side stands up and leaves the room535

on the right side (frame 416–491). When walking behind the536

two sitting people, partial occlusions occur which do not cause537

problems. Next, the person on the right (frame 583–637) leaves538

the room on the left side. His face is again partially occluded539

Fig. 10. Indoor tracking. Frames: 1, 12, 24, 31, 38, 41, 47, 54, 65, 71,
80, 107, 113, 120, 134 (the frame number is assigned from left to right
and top to bottom). (a) Original image sequence. (b) Tracking without ref-
erence model adaptation (α = 0). (c) Tracking with online reference model
learning (α = 0.2).

by the person in the middle. Then, the person on the center 540

chair leaves the room (frame 774). After that, a person on the 541

right side enters and sits at the left chair (frame 844). At frame 542

967, a small person is entering and moving to the chair in the 543

middle. Here, again, a partial occlusion occurs at frame 975, 544

which is also tackled. Finally, a person enters from the right 545

and sits down on the right chair (frame 1182, 1400). The partial 546

occlusions are shown in Fig. 5. Also, the blurred face of the 547

moving person in the back can be observed in this figure. The 548

reference model adaptation enables a more robust tracking. If 549

we do not update the models of the tracked objects over time, 550

the tracking fails in case of these partial occlusions. In [29], 551

occlusions are handled using multiple cameras for tracking 552

participants in a meeting. 553

B. Reference Model Adaptation for Single-Object Tracking 554

In the following, we show the benefit of the reference model 555

adaptation during tracking of a short indoor and outdoor se- 556

quence. In contrast to the meeting scenario, we restrict the 557
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Fig. 11. Observation likelihood of indoor sequence.

Fig. 12. Averaged trajectory with standard deviation in x and y of indoor
sequence (over ten runs).

tracking to one single object, i.e., face. This means, in par-558

ticular, that the automatic initialization and termination of the559

object is disabled. The object is initialized by hand in the first560

frame.561

Fig. 6(a) shows a short outdoor sequence where a person is562

moving behind a tree and two cars with strongly changing light-563

ing conditions. We have a total occlusion of the face in frames564

12 and 13 and a partial occluded face in frames 146 to 165. We565

repeated the tracking without and with reference model learning566

ten times, and a typical result is shown in Fig. 6(b) and (c),567

respectively. We use M = 50 particles for tracking, whereas568

only 15 particles with the best observation likelihood are shown569

in the figures.570

In Fig. 7, we present the average standard deviation of571

the trajectories over 100 tracking runs. The reference model572

learning rate α has been chosen in the range of 0, . . . , 0.6573

(0 means that there is no learning). The optimal learning rate574

with respect to a low standard deviation of the trajectories over575

100 independent runs is α = 0.2 for this outdoor sequence.576

Fig. 13. Outdoor tracking of multiple objects. Frames: 1, 12, 30, 47, 49, 51,
53, 57, 59, 79, 105, 107, 109, 111, 149 (the frame number is assigned from left
to right and top to bottom). (a) Original image sequence. (b) Tracking without
reference model adaptation (α = 0). (c) Tracking with online reference model
learning (α = 0.1).

Fig. 14. Averaged standard deviation of the trajectories of ten tracking runs
depending on the reference model learning rate α.

Fig. 8 shows the observation likelihood of the best particle 577

during tracking. At the complete occlusion (frames t = 12 and 578

t = 13) and the partial occlusion (frames t = 145, . . . , 160), the 579

observation likelihood drops, however, with reference model 580

learning a quick recovery is supported. 581
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Fig. 9 summarizes the averaged trajectory with the standard582

deviation over ten different tracking runs performed for the583

outdoor scene. In the case of reference model learning, we can584

observe in the video sequences that the tracking of the face585

gives highly similar trajectories. The standard deviation is small586

and approximately constant over time. However, if no learning587

of the reference model is performed, the standard deviation is588

large in certain time segments. This leads to the conclusion that589

model adaptation results in a more robust tracking.590

Fig. 10(a) shows an indoor video where a person is moving591

on a corridor, and a tree causes partial occlusion of the tracked592

face. Additionally, the lighting conditions are strongly varying.593

The face is partially occluded by the tree in frames 37–50 and594

110–126. Again, the tracking without and with reference model595

learning is repeated ten times, and a typical result is shown in596

Fig. 10(b) and (c), respectively. Only 15 particles with the best597

observation likelihood are visualized. The parameter setting is598

the same as in the previous experiments. The tracker without599

reference model refinement fails during the first occlusion in600

all ten runs, whereas the tracker with online model update is601

successful in all cases. The optimal learning rate α is set to 0.2602

(established during experiments).603

This can be also observed in the observation likelihood of604

the best particle over time (see Fig. 11) and in the averaged605

trajectory over ten tracking results (see Fig. 12).606

C. Reference Model Adaptation for Multiple Object Tracking607

We show tracking results for an outdoor scene where a kid is608

showing an adult dancing steps (see Fig. 13). A typical tracking609

result without and with reference model learning is shown610

in Fig. 13(b) and (c), respectively. Again, M = 50 particles611

are used, whereas only 15 particles with the best observation612

likelihood are shown in the figures. Similar as in the previous613

section, we did a repeatability test, i.e., we tracked the objects614

over ten independent runs. The tracked objects are initialized615

by hand in the very first frame.616

Fig. 14 shows the average standard deviation of the trajecto-617

ries of ten tracking runs using a learning rate α in the range of618

0, . . . , 0.6. The optimal learning rate for the Kid and the Adult is619

α = 0.1 and α = 0.2, respectively. Currently, α is fixed for the620

whole image sequence. Ideally, α could be adapted depending621

on the dynamics of the scene.622

V. CONCLUSION623

We propose a robust visual tracking algorithm for multiple624

objects (faces of people) in a meeting scenario based on low-625

level features as skin color, target motion, and target size. Based626

on these features, automatic initialization and termination of627

objects is performed. For tracking a sampling importance re-628

sampling, particle filter has been used to propagate sample629

distributions over time. Furthermore, we use online learning630

of the target models to handle the appearance variability of631

the objects. We discuss the similarity between our imple-632

mented tracker and GAs. Each particle represents an individual633

in the GA framework. The evaluation function incorporates634

the observation likelihood model and the individual selection635

process maps to the resampling procedure in the particle filter. 636

The state-space dynamics is incorporated in the recombination 637

and mutation operator of the GA. Numerous experiments on 638

meeting data show the capabilities of the tracking approach. 639

The participants were successfully tracked over long image 640

sequences. Partial occlusions are handled by the algorithm. 641

Additionally, we empirically show that the adaptation of the 642

reference model during tracking of indoor and outdoor scenes 643

results in a more robust tracking. 644

Future work concentrates on extending the tracker to other 645

scenarios and to investigate an adaptive reference model learn- 646

ing rate α which depends on the dynamics of the scene. Further- 647

more, we aim to develop approaches for tackling occlusions. 648
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Tracking of Multiple Targets Using Online
Learning for Reference Model Adaptation

1

2

Franz Pernkopf3

Abstract—Recently, much work has been done in multiple ob-4
ject tracking on the one hand and on reference model adaptation5
for a single-object tracker on the other side. In this paper, we do6
both tracking of multiple objects (faces of people) in a meeting7
scenario and online learning to incrementally update the models8
of the tracked objects to account for appearance changes during9
tracking. Additionally, we automatically initialize and terminate10
tracking of individual objects based on low-level features, i.e., face11
color, face size, and object movement. Many methods unlike our12
approach assume that the target region has been initialized by13
hand in the first frame. For tracking, a particle filter is incor-14
porated to propagate sample distributions over time. We discuss15
the close relationship between our implemented tracker based16
on particle filters and genetic algorithms. Numerous experiments17
on meeting data demonstrate the capabilities of our tracking18
approach. Additionally, we provide an empirical verification of the19
reference model learning during tracking of indoor and outdoor20
scenes which supports a more robust tracking. Therefore, we21
report the average of the standard deviation of the trajectories22
over numerous tracking runs depending on the learning rate.23

Index Terms—Genetic algorithms (GAs), multiple target track-24
ing, particle filter, reference model learning, visual tracking.25

I. INTRODUCTION26

V ISUAL tracking of multiple objects is concerned with27

maintaining the correct identity and location of a variable28

number of objects over time irrespective of occlusions and29

visual alterations. Lim et al. [1] differentiate between intrinsic30

and extrinsic appearance variability including pose variation,31

shape deformation of the object and illumination change, cam-32

era movement, occlusions, respectively.33

In the past few years, particle filters have become the method34

of choice for tracking. Isard and Blake [2] introduced particle35

filtering (condensation algorithm). Many different sampling36

schemes have been suggested in the meantime. An overview37

about sampling schemes of particle filters and the relation to38

Kalman filters is provided in [3].39

Recently, the main emphasis is on simultaneously tracking40

multiple objects and on online learning to adapt the reference41

models to the appearance changes, e.g., pose variation, illumi-42

nation change. Lim et al. [1] introduce a single-object tracker,43

where the target representation—a low-dimensional eigenspace44

representation—is incrementally updated to model the appear-45
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ance variability. They assume, like most tracking algorithms, 46

that the target region is initialized by hand in the first frame. 47

Jepson et al. [4] use a Gaussian mixture model which is adapted 48

using an online expectation maximization (EM) algorithm to 49

account for appearance changes. Their WSL tracker uses a 50

wavelet-based object model which is useful for tracking objects 51

where regions of the objects (i.e., faces) are stable while other 52

regions vary, e.g., mouth. McKenna et al. [5] employ Gaussian 53

mixtures of the color distributions of the objects as adaptive 54

model. In [6], simple color histograms are used to represent the 55

objects (similar as in [7]). However, they introduce a simple 56

update of the histograms to overcome the appearance changes 57

of the object. All the aforementioned articles are focused on 58

tracking a singe object. For tracking multiple objects, most 59

algorithms belong to one of the following three categories: 60

1) Multiple instances of a single-object tracker are used [8]. 61

2) All objects of interest are included in the state space [9]. 62

A fixed number of objects is assumed. Varying number of 63

objects result in a dynamic change of the dimension of the 64

state space. 3) Most recently, the framework of particle filters is 65

extended to capture multiple targets using a mixture model [10]. 66

This mixture particle filter—where each component models an 67

individual object—enables interaction between the components 68

by the importance weights. In [11], this approach is extended 69

by the Adaboost algorithm to learn the models of the targets. 70

The information from Adaboost enables detection of objects 71

entering the scene automatically. The mixture particle filter is 72

further extended in [12] to handle mutual occlusions. They 73

introduce a rectification technique to compensate for camera 74

motions, a global nearest neighbor data association method 75

to correctly identify object detections with existing tracks, 76

and a mean-shift algorithm which accounts for more stable 77

trajectories for reliable motion prediction. 78

In this paper, we do both tracking of multiple persons in 79

a meeting scenario and online adaptation of the models to 80

account for appearance changes during tracking. The tracking 81

is based on low-level features such as skin color, object motion, 82

and object size. Based on these features, automatic initialization 83

and termination of objects are performed. The aim is to use as 84

little prior knowledge as possible. For tracking, a particle filter 85

is incorporated to propagate sample distributions over time. Our 86

implementation is related to the dual estimation problem [13], 87

where both the states of multiple objects and the parameters 88

of the reference models are simultaneously estimated given the 89

observations. At every time step, the particle filter estimates the 90

states using the observation likelihood of the current reference 91

models while the online learning of the reference models is 92

based on the current state estimates. Additionally, we discuss 93

1083-4419/$25.00 © 2008 IEEE
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the similarity between our implemented tracker based on parti-94

cle filters and genetic algorithms (GAs). We want to emphasize95

this close connection since approaches what have indepen-96

dently been developed in one community might turn out to be97

very useful for the other community and vice versa. Numerous98

experiments on meeting data demonstrate the capabilities of our99

tracking approach. Additionally, we empirically show that the100

adaptation of the reference model during tracking of a indoor101

and outdoor scenes results in a more robust tracking. For this,102

we report the average of the standard deviation of the trajecto-103

ries over numerous independent tracking runs depending on the104

learning rate.105

The proposed approach differs from previous methods in106

several aspects. Recently, much work has been done in multiple107

object tracking on the one hand side and on reference model108

adaptation for a single-object tracker on the other side. In this109

paper, we do both tracking of multiple objects and online learn-110

ing to incrementally update the representation of the tracked ob-111

jects to model appearance changes. We use the Jensen–Shannon112

(JS) divergence [14] to measure the similarity between the113

tracked object and its reference model. Additionally, we discuss114

its advantages compared to the Kullback–Leibler divergence115

[15] and the Bhattacharyya similarity coefficient [16]. We auto-116

matically initialize and terminate tracking of individual objects117

based on low-level features, i.e., face color, face size, and object118

movement. Many methods unlike our approach assume that the119

target region has been initialized in the first frame.120

This paper is organized as follows. Section II introduces121

the particle filter for multiple object tracking, the state-space122

dynamics, the observation model, automatic initialization and123

termination of objects, and the online learning of the mod-124

els for the tracked objects. Section II-G summarizes the im-125

plemented tracker on the basis of pseudocode. Section III126

sketches the relationship to GA. The tracking results on a127

meeting scenario and for indoor/outdoor scenes are presented in128

Section IV. Additionally, we provide empirical verification of129

the reference model learning in this section. Section V con-130

cludes this paper.131

II. TRACKING USING PARTICLE FILTERS132

In many applications the states of a dynamic system have133

to be estimated from a time series of noisy observations. The134

Kalman filter [13], [17] is a linear dynamical system [18] that135

provides a linear time-discrete filter that estimates the states136

online over time once observations become available. This137

filter is recursive in a sense that each current state estimate138

is computed from the previous estimate and the current ob-139

served data. In contrast to linear dynamical systems, the hidden140

Markov model [19] assumes a discrete state space. Recently,141

many extentions of the basic linear dynamical system have142

been proposed [13] to overcome the assumption of the linear-143

Gaussian model used for the observations and state transition,144

e.g., the extended Kalman filter, unscented Kalman filter, or145

the switching state-space model [20]. Another approach for146

filtering is to use sequential Monte Carlo methods which are147

also known as particle filters [21]. They are capable to deal with148

any nonlinearity or distribution.149

A. Particle Filter 150

A particle filter is capable to deal with nonlinear non- 151

Gaussian processes and has become popular for visual tracking. 152

For tracking, the probability distribution that the object is in 153

state xt at time t given the observations y0:t up to time t is of 154

interest. Hence, p(xt|y0:t) has to be constructed starting from 155

the initial distribution p(x0|y0) = p(x0). In Bayesian filtering, 156

this can be formulated as iterative recursive process consisting 157

of the prediction step 158

p(xt|y0:t−1) =
∫

p(xt|xt−1)p(xt−1|y0:t−1)dxt−1 (1)

and of the filtering step 159

p(xt|y0:t) =
p(yt|xt)p(xt|y0:t−1)∫
p(yt|xt)p(xt|y0:t−1)dxt

(2)

where p(xt|xt−1) is the dynamic model describing the state- 160

space evolution which corresponds to the evolution of the 161

tracked object (see Section II-B) and p(yt|xt) is the likelihood 162

of an observation yt given the state xt (see observation model 163

in Section II-C). 164

In particle filters p(xt|y0:t) of the filtering step is ap- 165

proximated by a finite set of weighted samples, i.e., the 166

particles, {xm
t , wm

t }M
m=1, where M is the number of sam- 167

ples. Particles are sampled from a proposal distribution xm
t ∼ 168

q(xt|xt−1,y0:t) (importance sampling) [3]. In each iteration, 169

the importance weights are updated according to 170

wm
t ∝

p (yt|xm
t ) p

(
xm

t |xm
t−1

)
q
(
xm

t |xm
t−1,y0:t

) wm
t−1

M∑
m=1

wm
t = 1. (3)

One simple choice for the proposal distribution is to take the 171

prior density q(xm
t |xm

t−1,y0:t) = p(xm
t |xm

t−1) (bootstrap filter). 172

Hence, the weights are proportional to the likelihood model 173

p(yt|xm
t ) 174

wm
t ∝ p (yt|xm

t ) wm
t−1. (4)

The posterior filtered density p(xt|y1:t) can be approx- 175

imated as 176

p(xt|y1:t) ≈
M∑

m=1

wm
t δ (xt − xm

t ) (5)

where δ(xt − xm
t ) is the Dirac delta function with mass at xm

t . 177

We use resampling to reduce the degeneracy problem [3], 178

[21]. We resample the particles {xm
t }M

m=1 with replacement M 179

times according to their weights wm
t . The resulting particles 180

{xm
t }M

m=1 have uniformly distributed weights wm
t = 1/M . 181

Similar to the sampling importance resampling filter [3], we 182

resample in every time step. This simplifies (4) to wm
t ∝ 183

p(yt|xm
t ) since wm

t−1 = 1/M ∀m. 184

In the meeting scenario, we are interested in tracking the 185

faces of multiple people. We treat the tracking of multiple 186

objects completely independent, i.e., we assign a set of M 187

particles to each tracked object k as {{xm,k
t }M

m=1}K
k=1, where 188

K is the total number of tracked objects which dynamically 189



PERNKOPF: TRACKING OF MULTIPLE TARGETS USING ONLINE LEARNING 3

Fig. 1. JS divergence and Bhattacharyya similarity coefficient between two distributions estimated from samples. We added noise at a level of 10, 20, and 30 dB
to the distributions.

changes over time. Hence, we use multiple instances of a single-190

object tracker similar to [8].191

B. State-Space Dynamics192

The state sequence evolution {xt; t ∈ N} is assumed to be193

a second-order autoregressive process which is used instead194

of the first-order formalism (p(xt|xt−1)) introduced in the195

previous section. The second-order dynamics can be written as196

first order by extending the state vector at time t with elements197

from the state vector at time t − 1.198

We define the state vector at time t as xt = [xt yt sx
t sy

t ]T.199

The location of the target at t is given as xt, yt, respectively,200

and sx
t , sy

t denote the scale of the tracked region in the x × y201

image space. In our tracking approach, the transition model202

corresponds to203

xm,k
t+1 = xm,k

t + Cvt +
D

2M

M∑
m′=1

(
xm′,k

t − xm′,k
t−1

)
(6)

where vt ∼ N (0, I) is a simple Gaussian random noise model204

and the term 1/2M
∑M

m′=1(x
m′,k
t − xm′,k

t−1 ) captures the linear205

evolution of object k from the particles of the previous time206

step. Factor D models the influence of the linear evolution,207

e.g., D is set to 0.5. The parameters of the random noise208

model are set to C = diag([10 10 0.03 0.03]) with the209

units of [pixel/frame], [pixel/frame], [1/frame], and [1/frame],210

respectively.211

C. Observation Model212

The shape of the tracked region is determined to be an ellipse213

[4] since the tracking is focused on the faces of the individuals.214

We assume that the principal axes of the ellipses are aligned215

with the coordinate axes of the image. Similarly to [7], we use216

the color histograms for modeling the target regions. Therefore,217

we transform the image into the hue-saturation-value (HSV)218

space [22]. For the sake of readability, we abuse the notation219

and write the particle xm,k
t as xt in this section. We build220

an individual histogram for hue (H) hxt

H , saturation (S) hxt

S ,221

and value (V) hxt

V of the elliptic candidate region at xt. The 222

length of the principal axes of the ellipse are Ak
refs

x
t and Bk

refs
y
t , 223

respectively, where Ak
ref and Bk

ref are the length of the ellipse 224

axes of the reference model of object k. 225

The likelihood of the observation model (likelihood model) 226

p(ym,k
t |xm,k

t ) must be large for candidate regions with a his- 227

togram close to the reference histogram. Therefore, we intro- 228

duce the JS divergence [14] to measure the similarity between 229

the normalized candidate and reference histograms, hxt
c and 230

hk
c,ref , c ∈ {H,S, V }, respectively. Since, the JS divergence 231

is defined for probability distributions the histograms are nor- 232

malized, i.e.,
∑

N hxt
c = 1, where N denotes the number of 233

histogram bins. In contrast to the Kullback–Leibler divergence 234

[15], the JS divergence is symmetric and bounded between 0 235

and 1. The JS divergence between the normalized histograms is 236

defined as 237

JSπ

(
hxt

c , hk
c,ref

)
= H

(
π1h

xt
c + π2h

k
c,ref

)
−π1H (hxt

c ) − π2H
(
hk

c,ref

)
(7)

where π1 + π2 = 1, πi ≥ 0 and the function H(·) is the entropy 238

[15]. The JS divergence is computed for the histograms of the 239

H, S, and V space, and the observation likelihood is 240

p
(
ym,k

t |xm,k
t

)
∝exp−λ


 ∑

c∈{H,S,V }
JSπ

(
h
xm,k

t
c , hk

c,ref

)
 (8)

where parameter λ is chosen to be five and the weight πi is 241

uniformly distributed. The number of bins of the histograms is 242

set to N = 50. The JS divergence provides a lower and upper 243

bound to the Bayes error and π1 and π2 can be viewed as 244

a priori probabilities in a classification problem [14]. 245

In contrast to the often used Bhattacharyya similarity coef- 246

ficient

√
1 −

∑
N

√
h
xm,k

t
c hk

c,ref [16], the JS divergence is not 247

so sensitive to local perturbations in the histogram (noise). This 248

is shown in Fig. 1 where we compute the JS divergence and 249

Bhattacharyya similarity coefficient on synthetic data. There- 250

fore, we sample two Gaussian distributions with µ1 = −µ2, 251
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where µ1 varies from 0 to 1.5, and unit variance. Noise is added252

to those distributions at a level of 10, 20, and 30 dB. Plots are253

averaged over 100 independent simulations.254

D. Automatic Initialization of Objects255

If an object enters the frame, a set of M particles and a refer-256

ence histogram for this object have to be initialized. Basically,257

the initialization of objects is automatically performed using the258

following simple low-level features.259

1) Motion: The images are transformed to gray scale IG
xt,yt

.260

The motion feature is determined for each pixel located261

at x, y by the standard deviation over a time window262

Tw as σt
x,y = σ(IG

xt−Tw :t,yt−Tw :t
). Applying an adaptive263

threshold Tmotion = 1/10 maxx,y∈IG σt
x,y pixels with a264

value larger Tmotion belong to regions where movement265

happens. However, maxx,y∈IG σt
x,y has to be sufficiently266

large so that motion exists at all. A binary motion image267

IBmotion
xt,yt

after morphological closing is shown in Fig. 2.268

2) Skin Color: The skin color of the people is mod-269

eled by a Gaussian mixture model [23] in the HSV270

color space. A Gaussian mixture model p(z|Θ) is the271

weighted sum of L > 1 Gaussian components, p(z|Θ) =272 ∑L
l=1 αlN (z|µl,Σl), where z = [zH, zS, zV]T is the 3-D273

color vector of one image pixel, αl corresponds to the274

weight of each component l = 1, . . . , L. These weights275

are constrained to be positive αl ≥ 0 and
∑L

l=1 αl = 1.276

The Gaussian mixture is specified by the set of parameters277

Θ = {αl, µl,Σl}L
l=1. These parameters are determined278

by the EM algorithm [24] from a face database.279

Image pixels z ∈ IHSV
xt,yt

are classified according to their280

likelihood p(z|Θ) using a threshold Tskin. The binary281

map IBskin
xt,yt

filtered with a morphological closing operator282

is presented in Fig. 2.283

3) Object Size: We initialize a new object only for skin-284

colored moving regions with a size larger than TArea.285

Additionally, we do not allow initialization of a new set of286

particles in regions where currently an object is tracked.287

To this end, a binary map I
Bprohibited
xt,yt represents the areas288

where initialization is prohibited. The binary combination289

of all images IB
xt,yt

= IBmotion
xt,yt

∩ IBskin
xt,yt

∩ I
Bprohibited
xt,yt is290

used for extracting regions with an area larger TArea. Tar-291

get objects are initialized for those regions, i.e., the ellipse292

size (Ak
ref , B

k
ref) and the histograms hk

c,ref , c ∈ {H,S, V }293

are determined from the region of the bounding ellipse.294

Fig. 2 shows an example for the initialization of a new object.295

The original image IHSV
xt,yt

is presented in (a). A person entering296

from the right side should be initialized. A second person in297

the middle of the image is already tracked. The binary images298

of the thresholded motion IBmotion
xt,yt

and the skin-colored areas299

IBskin
xt,yt

are shown in (b) and (c), respectively. The reflections at300

the table and the movement of the curtain produce noise in the301

motion image. The color of the table and chairs intersects with302

the skin-color model. To guarantee successful initialization the303

lower part of the image—the region of the chairs and desk—has304

to be excluded. This is reasonable since nobody can enter in305

this area. Also, tracking is performed in the area above the306

Fig. 2. Initialization of a new object. (a) Original image with one ob-
ject already tracked. (b) Binary image of the thresholded motion I

Bmotion
xt,yt .

(c) Binary image of the skin-colored areas I
Bskin
xt,yt . (d) Image with region of

initialized object.

chairs only. Finally, the region of the new initialized object is 307

presented as ellipse in (d). Resizing of the images is performed 308

for computing the features to speed up the initialization of 309

objects. 310

1) Shortcomings: The objects are initialized when they en- 311

ter the image. The reference histogram is taken during this 312

initialization. There are the following shortcomings during 313

initialization. 314

1) The camera is focused on the people sitting at the table 315

and not on people walking behind the chairs. This means 316

that walking persons appear blurred. 317

2) Entering persons are moving relatively fast. This also 318

results in a degraded image quality (blurring). 319

3) During initialization, we normally get the side view of 320

the person’s head. When the person sits at the table the 321

reference histogram is not necessarily a good model for 322

the frontal view. 323

To deal with these shortcomings, we propose online learning 324

to incrementally update the reference models of the tracked 325

objects over time (see Section II-F). We perform this only in 326

cases where no mutual occlusions between the tracked objects 327

are existent. 328

E. Automatic Termination of Objects 329

Termination of particles is performed if the observation 330

likelihood p(ym,k
t |xm,k

t ) at state xm,k
t drops below a predefined 331

threshold TKill (e.g., 0.001), i.e., 332

p
(
ym,k

t |xm,k
t

)
=




0, if p
(
ym,k

t |xm,k
t

)
<TKill

p
(
ym,k

t |xm,k
t

)
, otherwise.

(9)

Particles with zero probability do not survive during resam- 333

pling. If the tracked object leaves the field of view all M 334



PERNKOPF: TRACKING OF MULTIPLE TARGETS USING ONLINE LEARNING 5

particles of an object k are removed, i.e., p(ym,k
t |xm,k

t ) = 0335

for all particles of object k.336

F. Incremental Learning of Object Models337

To handle the appearance change of the tracked objects over338

time, we use online learning to adapt the reference histograms339

hk
c,ref , c ∈ {H,S, V } (similar to [6]) and ellipse size Ak

ref and340

Bk
ref . Therefore, a learning rate α is introduced, and the model341

parameters for target object k are updated according to342

hk
c,ref =αĥk

c + (1 − α)hk
c,ref , c ∈ {H,S, V } (10)

Ak
ref =αÂk + (1 − α)Ak

ref (11)

Bk
ref =αB̂k + (1 − α)Bk

ref (12)

where ĥk
c denotes the histogram and Âk and B̂k are the prin-343

cipal axes of the bounding ellipse of the nonoccluded (i.e., no344

mutual occlusion between tracked objects) skin-colored region345

of the corresponding tracked object k located at {xm,k
t }M

m=1.346

Again, this region has to be larger than TArea. No update of347

the reference models is performed in the case where occlusion348

between the tracked objects occurs or the skin-colored region349

is not large enough. The latter condition is a simple way to350

ensure that the model update is only conducted for faces.351

This simplistic assumption can be appropriately extended by352

integrating more advanced face models.353

The learning rate α introduces an exponential forgetting354

process, i.e., the contribution of a specific object exponentially355

decreases as it recedes into the past. Currently, the learning rate356

(value between 0 and 1) is fixed (a good value has been selected357

during experiments). However, α could be adapted depending358

on the dynamics of the scene.359

Algorithm 1 Particle Filter Tracking360

Input: IHSV
x0:T ,y0:T

(Color image sequence 0 : T ),361

Skin-color model Θ362

Parameters: M , N , λ, C, D, Tw, Tmotion, Tskin, TArea,363

TKill, α364

Output: {{xm,k
0:T }M

m=1}∀k365

t ← 0366

k ← 0367

while InitObjects do368

k ← k + 1369

Obtain: hk
c,ref : c ∈ {H,S, V }, Ak

ref , Bk
ref , x

k
ref370

xm,k
t+1 ←xk

ref +Cvt ∀m=1, . . . ,M (Generate particles)371

end while372

K ← k373

for t = 1 to T do374

wm,k
t ∝ p(ym,k

t |xm,k
t )375

∀k = 1, . . . ,K ∀m = 1, . . . , M376

while KillObjects do377

k ← Determine object to terminate378

Remove M particles xm,k
t of object k379

Remove reference histogram and ellipse size:380

hk
c,ref : c ∈ {H,S, V }, Ak

ref , B
k
ref381

K ← K − 1382

end while383

Fig. 3. Tracking scene. We track and initialize objects in the red rectangle.

for k = 1 to K do 384

wm,k
t ← wm,k

t /
∑M

m′=1 wm′,k
t ∀m = 1, . . . ,M 385

{xm,k
t }M

m=1 ← Resampling 386

(with replacement): {xm,k
t , wm,k

t }M
m=1 387

xm,k
t+1←xm,k

t +Cvt+(D/2M)
∑M

m′=1(x
m′,k
t −xt−1)m′,k 388

∀m = 1, . . . , M (Apply state-space dynamics) 389

if OnlineUpdate then 390

Determine: ĥk
c : c ∈ {H,S, V }, Âk, B̂k 391

hk
c,ref ← αĥk

c + (1 − α)hk
c,ref c ∈ {H,S, V } 392

Ak
ref ← αÂk + (1 − α)Ak

ref 393

Bk
ref ← αB̂k + (1 − α)Bk

ref 394

end if 395

end for 396

while InitObjects do 397

K ← K + 1 398

Obtain: hK
c,ref : c ∈ {H,S, V }, AK

ref , BK
ref , x

K
ref 399

xm,K
t+1 ← xK

ref + Cvt ∀m = 1, . . . ,M (Generate 400

particles) 401

end while 402

end for 403

G. Implemented Tracker 404

In the following, we sketch our tracking approach for multi- 405

ple objects (see Algorithm 1). The binary variable InitObject 406

denotes that a new object for tracking has been detected. 407

KillObject is set if an object should be terminated. OnlineUp- 408

date indicates that object k located at {xm,k
t }M

m=1 is nonoc- 409

cluded, and the area of the skin-colored region is larger than 410

TArea, i.e., we perform online learning for reference model k. 411

Our implementation is related to the dual estimation problem 412

[13], where both the states of multiple objects xm,k
t and the 413

parameters of the reference models are simultaneously esti- 414

mated given the observations. At every time step, the particle 415

filter estimates the states using the observation likelihood of 416

the current reference models, while the online learning of the 417

reference models is based on the current state estimates. 418

III. RELATIONSHIP TO GAS 419

GAs are optimization algorithms founded upon the principles 420

of natural evolution discovered by Darwin. In nature, individ- 421

uals have to adapt to their environment in order to survive in 422
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Fig. 4. Tracking of people. Frames: 1, 416, 430, 449, 463, 491, 583, 609, 622, 637, 774, 844, 967, 975, 1182, 1400 (the frame number is assigned from left to
right and top to bottom).

a process of further development. An introduction of GAs can423

be found in [25] and [26]. GA are stochastic procedures which424

have been successfully applied in many optimization tasks.425

GA operate on a population of potential solutions applying the426

principle of survival of the fittest individual to produce better427

and better approximations to the solution. At each generation, a428

new set of approximations is created by the process of selecting429

individuals according to their level of fitness in the problem430

domain and assembling them together using operators inspired431

from nature. This leads to the evolution of individuals that are432

better suited to their environment than the parent individuals433

they were created from. GA model the natural processes, such434

as selection, recombination, and mutation. Starting from an435

initial population P (0), the sequence P (0), P (1), . . . , P (t),436

P (t + 1) is called population sequence or evolution. The end of437

an artificial evolution process is reached once the termination438

condition is met, and the result of the optimization task is439

available.440

In this section, we want to point to the close relationship441

between GA and our particle filter for tracking. This analogy442

has been mentioned in [27]. As suggested in Section II, we443

treat the tracking of multiple objects completely independent,444

i.e., we have a set of M particles for each object k. In the GA445

framework, we can relate this to k instantiations of GA, one446

for each tracked object. Hence, each particle xm
t of object k447

represents one individual in the population P (t) which is value448

encoded. The population size is M . A new genetic evolution449

process is started once a new object is initialized for tracking 450

(InitObject). The evolution process of the GA is terminated 451

either at the end of the video (t = T ) or when the set of 452

individuals is not supported by the fitness value (KillObject). 453

The observation likelihood p(ym,k
t |xm,k

t ) denotes the fitness 454

function to evaluate the individuals. However, the scope of GA 455

for tracking is slightly different. GA are generally used to find a 456

set of parameters for a given optimization task, i.e., the aim is to 457

find the individual with the best fitness after the termination of 458

the GA. Whereas, in the tracking case, the focus lies on the evo- 459

lution of the individuals, i.e., the trajectory of the tracked object. 460

The selection operator directs the search toward promising 461

regions in the search space. Roulette Wheel Selection [28] is a 462

widely used selection method which is very similar to sampling 463

with replacement as used in Section II. To each individual, a re- 464

production probability according to wm
t ← wm

t /
∑M

m′=1 wm′
t 465

is assigned. A roulette wheel is constructed with a slot size cor- 466

responding to the individuals reproduction probability. Then, 467

M uniformly distributed random numbers on the interval [0, 1] 468

are drawn and distributed according to their value around the 469

wheel. The slots where they are placed to compose the subse- 470

quent population P (t). The state-space dynamics of the particle 471

filter (see Section II-B) is modeled by the recombination and 472

mutation operator. 473

The framework of the GA for tracking one object k is 474

presented in Algorithm 1. The incremental learning of the 475

reference model is omitted for the sake of brevity. 476
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Fig. 5. Partial occlusions. Frames: 468, 616, 974, 4363 (the frame number is
assigned from left to right and top to bottom).

Algorithm 2 GA Tracking477

Input: IHSV
xt:T ,yt:T

(Color image sequence t : T ),478

Parameters: M , N , λ, C, D, TKill479

Output: {xm
t:T }M

m=1 (set of particle sequences t : T )480

Initialize population P (t) :481

xm
t ← xref + Cvt ∀m = 1, . . . ,M482

while KillObject ∩ t < T (Loop over image sequence) do483

Evaluate individuals:484

wm
t ← p(ym

t |xm
t ) ∀m = 1, . . . ,M485

Selection P (t):486

{xm
t }M

m=1← (Sampling with replacement){xm
t ,wm

t }M
m=1487

Recombination P (t + 1) :488

xm
t+1 ← xm

t + (D/2M)
∑M

m′=1(x
m′
t − xm′

t−1)489

∀m = 1, . . . ,M490

Mutation P (t+1) : xm
t+1←xm

t+1+Cvt ∀m=1, . . . ,M491

t ← t + 1492

end while493

IV. EXPERIMENTS494

We present tracking results on meeting data in Section IV-A495

where we do both tracking of multiple persons and on-496

line adaptation of the reference models during tracking. In497

Section IV-B, we empirically show that the adaptation of the498

reference model during tracking (single object) of an indoor499

and outdoor scene results in a more robust tracking. Finally, in500

Section IV-C, tracking results using reference model adaptation501

for multiple objects of an outdoor scene are presented. For the502

outdoor scenes, we report the average standard deviation of503

the trajectories of independent tracking runs depending on the504

learning rate α.505

A. Meeting Scenario506

The meeting room layout is shown in Fig. 3. The red rec-507

tangle [region of interest (ROI)] in the image marks the frame508

where tracking and initialization of objects are performed. Peo-509

ple may enter and leave on both sides of the image. Currently,510

our tracker initializes a new target even if it enters from the511

Fig. 6. Outdoor tracking. Frames: 7, 11, 12, 13, 14, 20, 42, 63, 80, 107,
136, 146, 158, 165, 192 (the frame number is assigned from left to right and
top to bottom). (a) Original image sequence. (b) Tracking without reference
model adaptation (α = 0). (c) Tracking with online reference model learning
(α = 0.2).

Fig. 7. Averaged standard deviation of the trajectories of 100 tracking runs
depending on the reference model learning rate α.

bottom, e.g., a hand moving from the table into the ROI. The 512

strong reflections at the table, chairs, and the white board cause 513

noise in the motion image. 514

For testing the performance of our tracking approach, ten 515

videos with ∼7000 frames have been used. The resolution is 516

640 × 480 pixels. The meeting room is equipped with a table 517

and three chairs. We have different persons in each video. The 518

people are coming from both sides into the frame moving 519
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Fig. 8. Observation likelihood of outdoor sequence.

Fig. 9. Averaged trajectory with standard deviation in x and y of outdoor
sequence (over ten runs).

to chairs and sit down. After a short discussion, people are520

sequentially leaving the room, are coming back, sit down at521

different chairs and so on. At the beginning, people may already522

sit at the chairs. In this case, we have to automatically initialize523

multiple objects at the very first frame.524

Fig. 4 shows the result of the implemented tracker for one525

video. All the initializations and terminations of objects are526

performed automatically. The appearance of an object changes527

over time. When entering the frame, we get the side view of528

the person’s head. After sitting down at the table, we have a529

frontal view. We account for this by incrementally updating the530

reference histogram during tracking. We perform this only in531

the case where no mutual occlusions with other tracked objects532

are existent. The participants were successfully tracked over533

long image sequences.534

First, the person on the left side stands up and leaves the room535

on the right side (frame 416–491). When walking behind the536

two sitting people, partial occlusions occur which do not cause537

problems. Next, the person on the right (frame 583–637) leaves538

the room on the left side. His face is again partially occluded539

Fig. 10. Indoor tracking. Frames: 1, 12, 24, 31, 38, 41, 47, 54, 65, 71,
80, 107, 113, 120, 134 (the frame number is assigned from left to right
and top to bottom). (a) Original image sequence. (b) Tracking without ref-
erence model adaptation (α = 0). (c) Tracking with online reference model
learning (α = 0.2).

by the person in the middle. Then, the person on the center 540

chair leaves the room (frame 774). After that, a person on the 541

right side enters and sits at the left chair (frame 844). At frame 542

967, a small person is entering and moving to the chair in the 543

middle. Here, again, a partial occlusion occurs at frame 975, 544

which is also tackled. Finally, a person enters from the right 545

and sits down on the right chair (frame 1182, 1400). The partial 546

occlusions are shown in Fig. 5. Also, the blurred face of the 547

moving person in the back can be observed in this figure. The 548

reference model adaptation enables a more robust tracking. If 549

we do not update the models of the tracked objects over time, 550

the tracking fails in case of these partial occlusions. In [29], 551

occlusions are handled using multiple cameras for tracking 552

participants in a meeting. 553

B. Reference Model Adaptation for Single-Object Tracking 554

In the following, we show the benefit of the reference model 555

adaptation during tracking of a short indoor and outdoor se- 556

quence. In contrast to the meeting scenario, we restrict the 557
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Fig. 11. Observation likelihood of indoor sequence.

Fig. 12. Averaged trajectory with standard deviation in x and y of indoor
sequence (over ten runs).

tracking to one single object, i.e., face. This means, in par-558

ticular, that the automatic initialization and termination of the559

object is disabled. The object is initialized by hand in the first560

frame.561

Fig. 6(a) shows a short outdoor sequence where a person is562

moving behind a tree and two cars with strongly changing light-563

ing conditions. We have a total occlusion of the face in frames564

12 and 13 and a partial occluded face in frames 146 to 165. We565

repeated the tracking without and with reference model learning566

ten times, and a typical result is shown in Fig. 6(b) and (c),567

respectively. We use M = 50 particles for tracking, whereas568

only 15 particles with the best observation likelihood are shown569

in the figures.570

In Fig. 7, we present the average standard deviation of571

the trajectories over 100 tracking runs. The reference model572

learning rate α has been chosen in the range of 0, . . . , 0.6573

(0 means that there is no learning). The optimal learning rate574

with respect to a low standard deviation of the trajectories over575

100 independent runs is α = 0.2 for this outdoor sequence.576

Fig. 13. Outdoor tracking of multiple objects. Frames: 1, 12, 30, 47, 49, 51,
53, 57, 59, 79, 105, 107, 109, 111, 149 (the frame number is assigned from left
to right and top to bottom). (a) Original image sequence. (b) Tracking without
reference model adaptation (α = 0). (c) Tracking with online reference model
learning (α = 0.1).

Fig. 14. Averaged standard deviation of the trajectories of ten tracking runs
depending on the reference model learning rate α.

Fig. 8 shows the observation likelihood of the best particle 577

during tracking. At the complete occlusion (frames t = 12 and 578

t = 13) and the partial occlusion (frames t = 145, . . . , 160), the 579

observation likelihood drops, however, with reference model 580

learning a quick recovery is supported. 581
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Fig. 9 summarizes the averaged trajectory with the standard582

deviation over ten different tracking runs performed for the583

outdoor scene. In the case of reference model learning, we can584

observe in the video sequences that the tracking of the face585

gives highly similar trajectories. The standard deviation is small586

and approximately constant over time. However, if no learning587

of the reference model is performed, the standard deviation is588

large in certain time segments. This leads to the conclusion that589

model adaptation results in a more robust tracking.590

Fig. 10(a) shows an indoor video where a person is moving591

on a corridor, and a tree causes partial occlusion of the tracked592

face. Additionally, the lighting conditions are strongly varying.593

The face is partially occluded by the tree in frames 37–50 and594

110–126. Again, the tracking without and with reference model595

learning is repeated ten times, and a typical result is shown in596

Fig. 10(b) and (c), respectively. Only 15 particles with the best597

observation likelihood are visualized. The parameter setting is598

the same as in the previous experiments. The tracker without599

reference model refinement fails during the first occlusion in600

all ten runs, whereas the tracker with online model update is601

successful in all cases. The optimal learning rate α is set to 0.2602

(established during experiments).603

This can be also observed in the observation likelihood of604

the best particle over time (see Fig. 11) and in the averaged605

trajectory over ten tracking results (see Fig. 12).606

C. Reference Model Adaptation for Multiple Object Tracking607

We show tracking results for an outdoor scene where a kid is608

showing an adult dancing steps (see Fig. 13). A typical tracking609

result without and with reference model learning is shown610

in Fig. 13(b) and (c), respectively. Again, M = 50 particles611

are used, whereas only 15 particles with the best observation612

likelihood are shown in the figures. Similar as in the previous613

section, we did a repeatability test, i.e., we tracked the objects614

over ten independent runs. The tracked objects are initialized615

by hand in the very first frame.616

Fig. 14 shows the average standard deviation of the trajecto-617

ries of ten tracking runs using a learning rate α in the range of618

0, . . . , 0.6. The optimal learning rate for the Kid and the Adult is619

α = 0.1 and α = 0.2, respectively. Currently, α is fixed for the620

whole image sequence. Ideally, α could be adapted depending621

on the dynamics of the scene.622

V. CONCLUSION623

We propose a robust visual tracking algorithm for multiple624

objects (faces of people) in a meeting scenario based on low-625

level features as skin color, target motion, and target size. Based626

on these features, automatic initialization and termination of627

objects is performed. For tracking a sampling importance re-628

sampling, particle filter has been used to propagate sample629

distributions over time. Furthermore, we use online learning630

of the target models to handle the appearance variability of631

the objects. We discuss the similarity between our imple-632

mented tracker and GAs. Each particle represents an individual633

in the GA framework. The evaluation function incorporates634

the observation likelihood model and the individual selection635

process maps to the resampling procedure in the particle filter. 636

The state-space dynamics is incorporated in the recombination 637

and mutation operator of the GA. Numerous experiments on 638

meeting data show the capabilities of the tracking approach. 639

The participants were successfully tracked over long image 640

sequences. Partial occlusions are handled by the algorithm. 641

Additionally, we empirically show that the adaptation of the 642

reference model during tracking of indoor and outdoor scenes 643

results in a more robust tracking. 644

Future work concentrates on extending the tracker to other 645

scenarios and to investigate an adaptive reference model learn- 646

ing rate α which depends on the dynamics of the scene. Further- 647

more, we aim to develop approaches for tackling occlusions. 648
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